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Abstract:

Introduction: Accurate measurement is foundational to psychological assessments, influencing research validity,
clinical  practice,  and  societal  applications.  While  extensively  utilized,  traditional  scoring  methods  suffer  from
limitations  in  granularity,  sensitivity,  and  adaptability,  potentially  impacting  the  precision  and  utility  of  these
assessments.  This  study  aims  to  explore  the  efficacy  of  fuzzy  logic  as  an  alternative  scoring  method  for  the
Satisfaction with Life Scale (SWLS), addressing these limitations.

Methods:  A  cross-sectional  design  involving  1,230  Greek  adults  was  employed  to  compare  traditional  scoring
methods with fuzzy logic. Data were collected online and analyzed using descriptive statistics, Pearson correlation,
paired t-tests, regression analysis, and sensitivity analysis to evaluate the robustness and reliability of fuzzy logic
scoring.

Results:  Results  indicated  that  fuzzy  logic  scoring  provides  enhanced  granularity  and  sensitivity,  effectively
capturing subtle variations in life satisfaction and mitigating ceiling and floor effects. The strong positive correlation
(r  =  .9505)  between  traditional  and  fuzzy  logic  scores  suggests  high  consistency.  Significant  mean  differences
highlighted  the  increased  sensitivity  of  fuzzy  logic  scoring.  The  Bland-Altman  plot  confirmed  good  agreement
between the methods, and sensitivity analysis demonstrated the robustness of fuzzy logic scoring across different
parameter settings.

Conclusion:  In  conclusion,  fuzzy  logic  offers  a  reliable  and  nuanced  alternative  to  traditional  scoring  methods,
significantly  improving  the  accuracy  and  applicability  of  psychological  assessments.  Integrating  fuzzy  logic  with
advanced technologies could further enhance the precision and inclusivity of psychological evaluations, making it a
promising tool for future psychological measurement.
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1. INTRODUCTION

1.1.  Importance  of  Accurate  Measurement  in
Psychological Assessments

Accurate measurement is fundamental to psychology,
underpinning both theoretical advancements and practical
applications  [1].  Psychological  assessments,  including
tests,  scales,  and  diagnostic  tools,  rely  on  precise  mea-
surement  to  ensure  validity,  reliability,  and  applicability
across  diverse  populations  [2].  The  critical  nature  of
accurate measurement in psychological assessments can
be  appreciated  through  its  impact  on  research,  clinical
practice, and societal implications [3].

In  psychological  research,  accurate  measurement  is
essential  for  establishing  the  validity  and  reliability  of
findings.  Validity  refers  to  the  extent  to  which  a  test
measures  what  it  purports  to  measure,  while  reliability
refers to the consistency of the test results over time and
across  different  contexts  [4-6].  Precise  measurements
ensure  that  constructs  such  as  intelligence,  personality
traits,  or  mental  health  conditions  are  accurately
captured, allowing researchers to draw valid conclusions.
Inaccurate measurements can lead to erroneous findings,
misinterpretations, and, ultimately, a loss of confidence in
psychological theories [7]. High-quality data from accurate
assessments enable researchers to replicate studies, verify
results, and build a solid foundation of knowledge [8].

In  clinical  settings,  the  accuracy  of  psychological
assessments  directly  affects  diagnosis,  treatment  plan-
ning,  and  outcome  evaluation  [9].  Clinicians  depend  on
precise  measurement  tools  to  diagnose  mental  health
disorders, determine their severity, and monitor progress
over  time.  For  instance,  an  accurate  assessment  of
depression using validated scales like the Beck Depression
Inventory  ensures  that  patients  receive  appropriate
interventions  tailored  to  their  specific  needs  [10].
Inaccurate  measurements  can  result  in  misdiagnoses,
inappropriate  treatments,  and  potentially  harmful
consequences for patients. Reliable assessments also aid
in identifying comorbid conditions, understanding patient
profiles,  and  customizing  therapeutic  approaches,  thus
enhancing  the  overall  effectiveness  of  clinical
interventions  [11].

Beyond  individual  clinical  outcomes,  accurate
psychological  assessments  have  broader  societal  impli-
cations.  They  are  crucial  in  educational  settings,  occu-
pational  contexts,  and  legal  proceedings.  In  education,
precise  measurement  of  cognitive  abilities  and  learning
disabilities helps develop effective teaching strategies and
support systems for students [3]. Accurate personality and
aptitude  assessments  are  used  for  employee  selection,
training, and career development in occupational settings,
contributing  to  better  job  performance  and  satisfaction
[12].  Psychological  assessments  are  employed  in  legal
contexts to evaluate competencies, risk assessments, and
custody  disputes  [13].  Inaccurate  assessments  in  these
domains  can  lead  to  unjust  decisions,  wasted  resources,
and significant social repercussions [14].

Accurate  measurement  is  vital  for  ensuring  that
psychological  assessments  are  equitable  and  inclusive.
Standardized  tests  must  be  validated  across  different
cultural,  linguistic,  and  demographic  groups  to  avoid
biases that could disadvantage specific populations [15].
Cultural competence in test design and administration is
essential  for  fair  and  accurate  measurement.  By
incorporating  diverse  perspectives  and  normative  data,
psychologists  can  develop  universally  applicable
assessments  that  respect  individual  differences,  thereby
promoting social justice in psychological practice [5].

The  advent  of  new  technologies  in  psychological
assessment,  such  as  computerized  adaptive  testing  and
artificial intelligence, further underscores the importance
of  accuracy.  These  technologies  promise  enhanced
precision  and  efficiency  but  require  rigorous  validation
and continuous monitoring to ensure reliable results [9].
The  integration  of  these  technologies  can  revolutionize
psychological  assessment,  providing  more  nuanced
insights  and  personalized  interventions,  but  only  if  they
are grounded in accurate measurement principles [10].

1.2. Limitations of Traditional Scoring Methods
Traditional  scoring  methods  in  psychological  assess-

ments have long been the standard for evaluating various
psychological constructs such as intelligence, personality,
and mental health conditions. While these methods have
been  widely  used  and  validated,  they  also  come  with
significant  limitations  that  can  affect  the  accuracy  and
utility  of  the  assessments.  Key  issues  include  a  lack  of
granularity,  sensitivity,  and  responsiveness  to  individual
differences, which can ultimately impact the validity and
reliability of the measurement [16, 17].

One  of  the  primary  limitations  of  traditional  scoring
methods  is  their  lack  of  granularity.  Traditional  scoring
often  involves  summing  or  averaging  item  scores  to
produce  a  total  score  representing  the  construct  of
interest.  This  approach  simplifies  complex  psychological
phenomena  into  a  single  score,  potentially  overlooking
subtle response variations. For instance, in a satisfaction
with life scale, traditional scoring might reduce nuanced
feelings and attitudes about different aspects of life to a
single  overall  satisfaction  score.  This  lack  of  detail  can
obscure important information about specific areas where
an  individual  might  thrive  or  struggle,  thus  limiting  the
depth of insights derived from the assessment [18, 19].

Traditional  scoring  methods  are  often  insensitive  to
small  but clinically significant changes in an individual's
condition.  This  insensitivity  can  be  particularly  prob-
lematic  in  monitoring  progress  over  time,  such  as  in
therapeutic settings where detecting slight improvements
or  deteriorations  is  crucial.  For  example,  a  depression
inventory  that  only  recognizes  substantial  shifts  in
symptom  severity  may  fail  to  capture  incremental
progress,  leading  to  a  perception  that  treatment  is
ineffective  when,  in  fact,  meaningful  changes  are
occurring.  This  lack  of  sensitivity  can  hinder  timely
adjustments  to  treatment  plans  and  negatively  impact
patient  outcomes  [18].
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Ceiling  and  floor  effects  are  common  issues  in
traditional  scoring  methods,  where  scores  cluster  at  the
high or low ends of the scale, respectively. These effects
can  limit  the  ability  to  detect  differences  among
individuals  who  score  at  the  extremes.  For  example,
competent individuals taking a cognitive ability test might
all  score  near  the  maximum,  making  it  difficult  to
distinguish  between  high  ability  levels.  Similarly,
individuals  with  severe  impairment  might  all  score  near
the  minimum,  obscuring  variations  in  severity.  These
limitations  reduce  the  discriminatory  power  of  the
assessment, potentially leading to less effective decision-
making [20].

Traditional scoring methods are generally static and do
not  adapt  to  the  individual's  responses  or  changing
conditions.  This  rigidity  contrasts  with  adaptive  testing
methods,  which  adjust  the  difficulty  and  relevance  of
questions based on previous responses, providing a more
personalized assessment experience. Traditional methods
often  fail  to  accommodate  the  dynamic  nature  of
psychological  constructs,  where  an  individual's  state  or
traits  might  fluctuate  over  time  or  in  different  contexts.
This  lack  of  flexibility  can  result  in  less  responsive
assessments of the nuances of individual differences [21].

Another  significant  limitation  of  traditional  scoring
methods is their susceptibility to cultural and contextual
biases.  Many  standardized  tests  are  developed  and
normed within specific cultural contexts, which may not be
applicable  or  fair  when  used  in  diverse  populations.
Cultural  differences  in  expression,  understanding,  and
value  systems  can  lead  to  systematic  biases  in  scores,
affecting  the  validity  of  the  assessment  for  individuals
from  different  backgrounds.  This  bias  can  result  in
inaccurate  diagnoses,  inappropriate  interventions,  and
perpetuating inequities in psychological practice [22, 23].

1.3. Fuzzy Logic as a Promising Alternative
Fuzzy  logic,  a  mathematical  framework  for  dealing

with  uncertainty  and  imprecision,  presents  a  promising
alternative to traditional scoring methods in psychological
assessments [24]. Developed by Lotfi Zadeh in the 1960s,
fuzzy  logic  extends  classical  Boolean  logic  to  handle
partial  truth,  where  variables  can  have  degrees  of  truth
values  between  completely  true  and  false  [25].  This
flexibility  makes  it  particularly  well-suited  for  psycho-
logical  assessments,  where  human  experiences  and
behaviors  are  often  complex,  nuanced,  and  not  easily
quantifiable.  Fuzzy  logic  offers  several  potential
advantages  in  scoring  and  enhancing  psychological
measures'  accuracy,  sensitivity,  and  applicability  [26].

One of the primary benefits of fuzzy logic is its ability
to  capture  granularity  and  subtle  variations  in
psychological constructs [27]. Traditional scoring methods
often  reduce  responses  to  discrete  categories  or  single
scores, which can obscure important details. In contrast,
fuzzy logic allows for incorporating partial membership in
multiple  categories  [28].  For  example,  in  assessing  life
satisfaction,  an  individual's  response  can simultaneously
belong to low, medium, and high satisfaction categories to

varying degrees. This approach provides a more detailed
and  nuanced  understanding  of  an  individual's  psycho-
logical state, capturing the complexity of human emotions
and experiences [29].

Fuzzy  logic  scoring  is  inherently  more  sensitive  to
small  but  meaningful  changes  in  psychological  states.
Traditional methods might not detect slight improvements
or deteriorations due to their reliance on fixed thresholds
and  discrete  scoring  [30].  Fuzzy  logic,  however,  uses
continuous  membership  functions  that  can  reflect
incremental  changes  more  accurately.  This  sensitivity  is
particularly  valuable  in  clinical  settings,  where  tracking
gradual  progress  or  subtle  symptom  shifts  can  inform
treatment  adjustments  and  therapeutic  decisions.  For
instance,  a  fuzzy  logic-based  depression  scale  can  more
precisely monitor changes in symptom severity, facilitating
timely and tailored interventions [31].

By  allowing  for  partial  memberships  and  continuous
values,  fuzzy  logic  scoring  mitigates  the  problems  of
ceiling  and  floor  effects  commonly  encountered  in
traditional assessments. These effects occur when scores
cluster  at  the  high  or  low  ends  of  a  scale,  limiting  the
ability to distinguish between individuals with very high or
deficient levels of the assessed trait. Fuzzy logic provides
a  more  differentiated  scoring  system  that  can  capture
variations  even  at  the  scale's  extremes,  enhancing  the
assessment's  discriminatory  power  [32].  This  ability  to
differentiate  among  individuals  at  all  levels  of  a  trait
makes  fuzzy  logic  particularly  useful  for  high-stakes
assessments  in  education,  employment,  and  clinical
diagnosis  [33,  34].

Fuzzy logic is highly adaptable and can be tailored to
individual  differences  and  specific  contexts  [35].
Traditional  scoring  methods  are  often  rigid  and  do  not
account  for  the  dynamic  nature  of  psychological
constructs  or  the  unique  characteristics  of  individuals.
Fuzzy  logic,  with  its  flexible  membership  functions  and
rule-based systems, can be customized to reflect diverse
populations and varied contexts. This adaptability ensures
that  assessments  are  more  equitable  and  valid  across
different cultural, linguistic, and demographic groups [36,
37].  For example,  fuzzy logic can adjust scoring rules to
account  for  cultural  variations  in  the  expression  of
psychological constructs, reducing bias and enhancing the
fairness of the assessment [22].

Integrating  fuzzy  logic  with  advanced  technologies
such  as  artificial  intelligence  (AI)  and  machine  learning
further  enhances  its  potential  in  psychological
assessments.  AI  algorithms  can  optimize  fuzzy  member-
ship functions and decision rules, leading to more precise
and  individualized  assessments.  This  synergy  allows  for
real-time processing and complex data analysis, providing
deeper  insights  and  more  accurate  predictions  [38-40].
For instance, adaptive testing platforms powered by fuzzy
logic  and  AI  can  dynamically  adjust  questions  based  on
real-time responses, offering a personalized and efficient
assessment experience [41].
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1.4. Research Questions
The study aims to explore the viability and benefits of

applying  fuzzy  logic  as  an  alternative  scoring  method in
psychological  assessments,  explicitly  focusing  on  the
Satisfaction  with  Life  Scale  (SWLS).  This  research  is
driven  by  the  need  to  address  limitations  inherent  in
traditional  scoring  methods,  such  as  lack  of  granularity,
sensitivity, and adaptability. These research questions are
designed to provide a comprehensive evaluation of fuzzy
logic  scoring  compared  to  traditional  methods  and  are
closely  aligned  with  the  study's  findings:

How does the accuracy of fuzzy logic scoring compare to[1]
traditional  scoring  methods  in  psychological
assessments?
Does  fuzzy  logic  scoring  enhance  the  sensitivity  of[2]
psychological assessments to detect small but significant
changes in individual responses?
How do fuzzy logic and traditional scoring methods differ[3]
in  their  ability  to  mitigate  ceiling  and  floor  effects  in
psychological assessments?
What are the practical implications of implementing fuzzy[4]
logic scoring in psychological assessments?

2. METHODS

2.1. Description of the Sample and Data Collection

2.1.1. Participants
This  study  employed  a  cross-sectional  design  to

compare  the  effectiveness  of  traditional  and  fuzzy  logic
scoring methods in psychological assessments. Data were
collected using the Satisfaction With Life Scale (SWLS), a
widely utilized instrument for measuring life satisfaction
[42]. The primary objective was to evaluate the feasibility
and  accuracy  of  fuzzy  logic  scoring  compared  to
traditional  methods,  using  real-world  data  to  provide
robust  and  applicable  findings  [43].

From  November  2021  to  February  2022,  under-
graduate psychology students facilitated the recruitment
of  1,230  Greek  adults  using  an  online  approach.
Participants  were recruited through a  network sampling
method to ensure diversity and comprehensiveness in the
data collection. The sample consisted of individuals aged
18  to  80  (M  =  29.2,  SD  =  13.3)  [44,  45].  Table  1

summarizes  the  demographic  characteristics  of  the
participants.

2.1.2. Ethical Considerations
All  participants  provided  informed  consent,  and  the

study  adhered  to  the  ethical  principles  outlined  in  the
revised 1975 Declaration of Helsinki, ensuring compliance
with national and institutional guidelines [46].

2.1.3. Instrument
The  Satisfaction  with  Life  Scale  (SWLS)  is  a

unidimensional  measure  that  assesses  perceived  life
satisfaction [42]. Participants rate their satisfaction on a 7-
point Likert scale ranging from 1 (Strongly Disagree) to 7
(Strongly Agree), with total scores ranging from 5 to 35.
For  this  study,  the  SWLS  demonstrated  strong  internal
consistency with a Cronbach's alpha of .84 (95% CI = .82,
.85)  and  model-based  reliability  (McDonald's  ω)  of  .85,
providing  a  reliable  gauge  of  participants'  overall  life
satisfaction  [47].

Confirmatory factor analysis  (CFA) was conducted to
evaluate the measurement model for the SWLS. The model
fit  was  assessed  using  several  indices,  including  the
Comparative  Fit  Index  (CFI),  Tucker-Lewis  Index  (TLI),
Root Mean Square Error of Approximation (RMSEA), and
Standardized  Root  Mean  Square  Residual  (SRMR)  [48,
49]. The factor loadings and variances were examined to
ensure the validity of the SWLS items [50].

2.2. Scoring Methods

2.2.1. Traditional Scoring Method
The  traditional  scoring  method  for  the  Satisfaction

With Life Scale (SWLS) involves summing the responses to
the five items on the scale. Each item is rated on a 7-point
Likert  scale  ranging  from  1  (Strongly  Disagree)  to  7
(Strongly Agree). The scores for each item are then added
to produce a total score ranging from 5 to 35. This total
score represents the individual's overall  life satisfaction,
with  higher  scores  indicating  greater  satisfaction.  The
simplicity  of  this  method  allows  for  straightforward
interpretation  and  comparison  across  different  studies
[51].  However,  it  also  reduces the rich,  nuanced data of
individual  responses  into  a  single  composite  score,
potentially losing significant variations in life satisfaction
[47].

Table 1. Demographic characteristics of the sample.

Characteristic Category %

Sex Male 31.7

-
Female 67.6
Other 0.7

Age Mean (SD) 29.2 (13.3)
Marital status Single 70.2

-
Married/cohabitating 25.0

Divorced 3.5
Widowed 1.3

Parenthood status With children 25.9



Exploring Fuzzy Logic as an Alternative Approach in Psychological Scoring 5

Characteristic Category %

- Without children 74.1
Education Primary school 0.9

-

Secondary school 1.7
High school graduate 21.5

College/university student 49.6
College/university graduate 18.0

Postgraduate degree 7.5
Doctorate degree 0.8

Monthly income No income 46.6

-

< 600 € 16.7
600 € - 1200 € 23.2

1201 € - 1800 € 8.1
1801 € - 2500 € 2.2
2501 € - 4000 € 0.9

> 4000 € 2.3
Occupation Self-employed 8.1

-

Public sector employee 10.5
Private sector employee 20.3

Retired 1.9
Homemaker 2.6
Unemployed 4.7

Student 50.1
Other 1.8

Table 2. Comparison of membership functions.

Function Type Characteristics Pros Cons

Triangular Simple, single-peak Easy to implement and understand Sharp transitions, less flexible
Trapezoidal Flat top, sloped sides Flexible, interpretable, robust to outliers Slightly more complex than triangular

Gaussian Smooth, bell-shaped curve Very smooth transitions Computationally intensive, complex

2.2.2. Fuzzy Logic Scoring Method
Fuzzy  logic  scoring  methods  leverage  membership

functions  to  handle  the  inherent  uncertainty  and
imprecision  in  psychological  assessments  [52].  In  this
study, trapezoidal membership functions [53] were chosen
over  other  types,  such  as  triangular  or  Gaussian,  for
several  reasons  (Table  2):

2.2.2.1. Flexibility
Trapezoidal  membership  functions  provide  a  flexible

approach  to  model  the  gradual  transitions  between
different  satisfaction  levels.  They  can  more  naturally
accommodate  a  range  of  values  representing  a  fuzzy
concept than triangular functions' rigid boundaries [54].

2.2.2.2. Simplicity and Interpretability
Trapezoidal  functions  are  relatively  simple  to

implement  and  interpret.  They  consist  of  a  plateau  (flat
top),  which  allows  for  a  more  straightforward
representation  of  the  core  satisfaction  range,  while  the
sloped sides represent the gradual transition into adjacent
categories [55].

2.2.2.3. Reduced Sensitivity to Outliers
The flat top of trapezoidal functions makes them less

sensitive to outliers, providing a more robust measure that
does not overemphasize extreme values [56].

2.2.2.4. Computational Efficiency
Compared  to  more  complex  functions  like  Gaussian,

trapezoidal membership functions are computationally less
intensive,  making  them  suitable  for  large  datasets  and
real-time applications [57, 58].

2.2.3. Implementation and Normalization

2.2.3.1. Membership Functions
To  implement  the  fuzzy  logic  scoring  method,

trapezoidal  membership  functions  were  defined  for  low,
medium, and high satisfaction levels for each SWLS item.
The membership functions were constructed based on the
following criteria (Table 3):

2.2.3.2. Low Satisfaction
A  high  degree  of  membership  at  lower  scores  (1-3),

tapering off towards higher scores.

2.2.3.3. Medium Satisfaction
Moderate  scores  (3-6)  with  a  peak  membership

represent  satisfaction's  central  tendency.

(Table 1) contd.....
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2.2.3.4. High Satisfaction
Higher  scores  (5-7)  strongly  agree  with  the  high

satisfaction  items.

2.2.3.5. Defuzzification Process
After determining the degrees of membership for each

response, the next step involved defuzzification to convert
the  fuzzy  scores  into  a  single  crisp  score.  The  center  of
gravity  (COG)  method  was  used,  which  calculates  the
weighted  average  of  the  fuzzy  values:

Defuzzified  Score=∑  (membership  value×center  of
membership  function)  /  ∑(membership  value)

Table 3. Trapezoidal membership functions.

Satisfaction Level Membership Function (μ(x))

Low μ_low(x) = { 1 if x ≤ 1, 1/2(3 - x) if 1 < x ≤ 3, 0 if x >
3 }

Medium μ_medium(x) = { 0 if x ≤ 3, (x - 3)/1 if 3 < x ≤ 4, (6 -
x)/2 if 4 < x ≤ 6, 0 if x > 6 }

High μ_high(x) = { 0 if x ≤ 5, (x - 5)/2 if 5 < x ≤ 7, 1 if x >
7 }

This  process  was  applied  to  each  participant's
aggregated membership values from all SWLS items [59].

2.2.3.6. Normalization
To ensure comparability between traditional and fuzzy

logic scores, the defuzzified scores were normalized to the
same range as the traditional SWLS scores (5 to 35). This
was achieved by linearly scaling the defuzzified scores:

Normalized  Score=Defuzzified  Score×(35/max
(Defuzzified  Scores))

This normalization ensured that the fuzzy logic scores
were  on  the  same  scale  as  the  traditional  scores,
facilitating  direct  comparisons  [60].

By  implementing  fuzzy  logic  with  trapezoidal
membership  functions  and  normalizing  the  results,  this
study  aimed  to  enhance  psychological  assessments'
sensitivity,  granularity,  and  adaptability,  providing  a
robust  alternative  to  traditional  scoring  methods.

2.3. Statistical Analyses
The  following  statistical  tests  and  analyses  were

performed  to  compare  the  traditional  and  fuzzy  logic
scoring  methods  and  evaluate  the  effectiveness  and
accuracy  of  the  fuzzy  logic  approach  (Table  4).

Descriptive  statistics  were  computed  for  traditional
and  fuzzy  logic  scores,  including  measures  of  central
tendency  (mean,  median)  and  variability  (standard
deviation, range). These statistics provided an overview of
the data  distribution and facilitated a  comparison of  the
overall  scores  between  the  two  methods.  Pearson
correlation  coefficients  were  calculated  to  examine  the
relationship  between  traditional  and  fuzzy  logic  scores.
This analysis assessed the degree to which the two scoring
methods  were  linearly  related,  offering  insights  into  the
consistency between traditional and fuzzy logic scoring.

A  paired  t-test  was  conducted  to  determine  whether

there  was  a  significant  difference  between  the  mean
traditional  scores  and  the  mean  fuzzy  logic  scores  [61].
This  test  compared  the  two  scores  for  the  same
participants,  evaluating  whether  the  fuzzy  logic  method
produced significantly different results than the traditional
method. Sensitivity analysis was performed to evaluate the
robustness of the fuzzy logic scoring method. This involved
slightly varying the membership function parameters and
observing  the  impact  on  the  resulting  fuzzy  scores.  The
goal  was  to  ensure  that  the  fuzzy  logic  scores  remained
consistent and reliable under different parameter settings.

A  Bland-Altman  plot  was  created  to  assess  the
agreement between traditional and fuzzy logic scores [62].
This  plot  displayed  the  differences  between  the  two
scoring  methods  against  their  mean,  highlighting  any
systematic bias and identifying potential outliers or trends
in the agreement. Linear regression analysis was used to
model  the  relationship  between  fuzzy  logic  scores
(dependent variable) and traditional scores (independent
variable).  This  analysis  provided  regression  coefficients,
measures of model fit (R-squared), and tests for statistical
significance.  It  helped  me  understand  how  well  the
traditional  scores  predicted  the  fuzzy  logic  scores.

Table 4. The synoptic analytic strategy.

Step Description

Data Collection Collection of SWLS data from participants

Data Preprocessing Handling missing data, outlier detection,
normalization

Confirmatory Factor
Analysis

Validation of SWLS measurement model using
CFA

Traditional Scoring Calculation of traditional SWLS scores

Fuzzy Logic Scoring Implementation of trapezoidal membership
functions, defuzzification, normalization

Summary Statistics Descriptive statistics for traditional and fuzzy
scores

Correlation Analysis Pearson correlation between traditional and
fuzzy scores

Paired t-test Comparison of mean traditional and fuzzy
scores

Sensitivity Analysis Evaluation of robustness of fuzzy logic scoring

Bland-Altman Plot Agreement assessment between traditional and
fuzzy scores

Regression Analysis Modeling the relationship between fuzzy and
traditional scores

ANOVA Analysis of variance for sensitivity analysis
results

Interpretation Interpretation of results, addressing research
questions

Implications and Future
Work

Discuss implications, limitations, and future
research directions.

ANOVA  was  conducted  on  the  sensitivity  analysis
results to evaluate whether variations in the membership
function parameters significantly affected the fuzzy logic
scores. This analysis compared the means of fuzzy scores
under  different  parameter  settings  to  determine  if  the
differences  were  statistically  significant.

All  statistical  analyses  were  performed  using  R,  a
robust  statistical  computing  environment.



Exploring Fuzzy Logic as an Alternative Approach in Psychological Scoring 7

3. RESULTS

3.1. Validation of the SWLS
The Satisfaction With Life Scale (SWLS) was evaluated

using Structural Equation Modeling (SEM) to assess the fit
of  a  single  latent  variable  model  influenced  by  five
observed variables (SWLS_1 to SWLS_5). The model was
estimated  using  the  Maximum  Likelihood  with  Robust
Standard Errors (MLR) method [63]. The results indicate
that the SEM model fits the data well.

3.1.1. Model Fit Indices
The  Chi-square  test  was  significant  (χ2(5)=28.443=

28.443, p<.001), which is common in large samples due to
its  sensitivity  to  sample  size.  However,  alternative  fit
indices such as the Comparative Fit  Index (CFI)  and the
Tucker-Lewis Index (TLI) are less affected by sample size
and indicate a good fit (CFI = .985, TLI = .969). The Root
Mean Square Error of Approximation (RMSEA) was .065,
with a 90% confidence interval of .046 to .086, indicating
an  acceptable  fit.  The  Standardized  Root  Mean  Square
Residual (SRMR) was .022, further supporting the model
fit.

3.1.2. Parameter Estimates
All  factor  loadings  for  the  observed  variables  on  the

latent variable Swls were significant at the p<.001 level,
indicating strong relationships between the latent variable
and its indicators. The standardized loadings ranged from
.596 to .883, demonstrating that all items are meaningful
indicators  of  the  latent  satisfaction  construct.  This
validation  supports  the  use  of  SWLS  for  subsequent
analyses.

3.2. Descriptive Statistics
Descriptive  statistics  were  computed  to  provide  an

overview of the data distribution for traditional and fuzzy
logic  scores.  The  traditional  scores  had  a  mean  of  22.3
with  a  standard  deviation  (SD)  of  6.17,  while  the  fuzzy
scores had a higher mean of 25.9 and an SD of 5.88 (Table
5). This indicates that the fuzzy scoring method may yield
higher reported satisfaction levels than traditional scoring.

Table  5.  Descriptive  statistics  for  traditional  and
fuzzy  logic  scores.

Statistic Traditional Score Fuzzy Logic Score

Mean 22.3 25.9
Median 22 26

Standard Deviation 6.17 5.88
Minimum 5 5
Maximum 35 35

Fig. (1). The box plot shows that the median fuzzy logic score is higher than the median traditional score, and the interquartile range is
narrower for fuzzy logic scores, indicating less variability among the middle 50% of the scores.
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The distribution of scores is further illustrated in the
box  plot  (Fig.  1)  and  histogram  (Fig.  2).  The  box  plot
reveals  that  the  median  fuzzy  score  is  higher  than  the
median traditional score, suggesting that respondents may
score  themselves  higher  on  the  fuzzy  logic  scale.
Additionally,  the  histogram  shows  that  fuzzy  scores  are
more  normally  distributed  than  traditional  scores,
indicating  that  the  fuzzy  scoring  method  may  provide  a
more balanced representation of satisfaction levels.

3.3. Correlation Analysis
Pearson correlation analysis examined the relationship

between  traditional  and  fuzzy  logic  scores.  The  analysis
revealed  a  strong  positive  correlation  coefficient  of
r=.9505,  indicating  a  high  degree  of  linear  relationship
between the two scoring methods. This strong correlation
suggests that fuzzy logic scores are highly consistent with
traditional  scores,  demonstrating  that  the  fuzzy  logic

method can reliably replicate the outcomes of traditional
scoring  while  providing  additional  sensitivity  and
granularity.

The  high  correlation  coefficient  indicates  that  while
the  fuzzy  logic  scoring  method  provides  more  nuanced
results,  it  still  aligns  closely  with  traditional  scoring,
ensuring  that  the  fuzzy  logic  method  retains  the
fundamental  insights  the  traditional  approach  provides.

3.4. Paired t-test Results
A  paired  t-test  was  conducted  to  compare  the  mean

scores of the traditional and fuzzy logic scoring methods.
The  analysis  yielded  a  t-value  of  -62.495  with  1,105
degrees of freedom and a p-value of < .001, indicating a
statistically significant difference between the two scoring
methods.  The  mean  difference  was  -3.606,  with  a  95%
confidence interval ranging from -3.719 to -3.493.

Fig. (2). The histogram reveals that the distribution of fuzzy logic scores is more symmetric and normal compared to the traditional
scores, which exhibit a slight left skewness.
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The significant difference in mean scores suggests that
the  fuzzy  logic  scoring  method produces  higher  average
scores than traditional scoring. This difference highlights
the enhanced sensitivity of fuzzy logic scoring in capturing
variations  in  life  satisfaction,  as  it  can  reflect  more
nuanced  changes  in  participants'  responses.  These
findings  support  the  hypothesis  that  fuzzy  logic  scoring
can  capture  subtle  variations  in  satisfaction  levels  that
traditional methods might overlook.

3.5. Sensitivity Analysis
Sensitivity  analysis  evaluated  the  robustness  of  the

fuzzy  logic  scoring  method  by  slightly  varying  the
membership functions' parameters. The analysis revealed
that  the  fuzzy  logic  scores  remained  consistent  under
different  parameter  settings,  with  correlations  between
traditional and modified fuzzy scores ranging from .950 to
.990 across different deltas (Fig. 3).

The  consistently  high  correlations  suggest  that  the
fuzzy  logic  scores  remain  reliable  and  comparable  to
traditional  scores  even  when  the  membership  functions
are  slightly  adjusted.  This  robustness  is  crucial  for
applying fuzzy logic scoring, ensuring the results are not
overly sensitive to specific parameter choices.

3.6. Bland-altman Plot Interpretation
The  Bland-Altman  plot  assessed  the  agreement

between  traditional  and  fuzzy  logic  scores.  This  plot
displayed  the  differences  between  the  two  scoring
methods against their mean, highlighting any systematic
bias  and  identifying  potential  outliers.  The  plot  (Fig.  4)
shows a generally good agreement between the methods,
with  most  differences  falling  within  the  95%  limit  of
agreement. The mean difference was -3.61, with limits of
agreement ranging from -9.00 to 1.78. This indicates that
while the fuzzy scores tend to be slightly higher, the two
methods generally agree.

Fig. (3). The sensitivity plot shows the high correlation between traditional and fuzzy logic scores across various parameter settings,
confirming the robustness of the fuzzy logic scoring method.
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Fig. (4). The Bland-Altman plot shows that most differences between traditional and fuzzy logic scores are minor and within acceptable
limits, indicating good agreement between the methods.

The Bland-Altman analysis supports fuzzy logic scoring
by  demonstrating  that  the  differences  between  the  two
methods are minimal and within acceptable ranges, thus
reinforcing the reliability of fuzzy logic scores.

3.7. Regression Analysis
Regression analysis was used to model the relationship

between  fuzzy  logic  scores  (dependent  variable)  and
traditional scores (independent variable). The regression
model demonstrated a strong linear relationship, with an
R2  value  of  .903,  indicating  that  traditional  scores  are  a
good  predictor  of  fuzzy  logic  scores.  The  regression
summary  is  as  follows:Intercept:  5.713  (SE  =  .206,
t=27.76, p<.0001), and Slope: .905 (SE = .009, t=101.62,
p<.0001)

The regression line, with a slope of .905, indicates that
for  each unit  increase  in  the  traditional  score,  the  fuzzy
score increases by approximately .905 units. The intercept

of 5.713 suggests that even at a traditional score of zero,
the  fuzzy  score  would  be  about  5.713,  reflecting  the
baseline  level  of  satisfaction  captured  by  the  fuzzy
method.

The high R2 value underscores the reliability of using
traditional scores to predict fuzzy logic scores, indicating
that the new scoring method maintains the integrity of the
traditional scores while adding more depth and sensitivity.

3.8. ANOVA Results
ANOVA  was  conducted  on  the  sensitivity  analysis

results to evaluate whether variations in the membership
function parameters significantly affected the fuzzy logic
scores.  The  results  indicated  no  significant  effect  of
parameter  variations  F(10,1094)=1.03,  p=.433,  further
supporting  the  robustness  of  the  fuzzy  scoring  method.
This  finding  reinforces  the  reliability  of  the  fuzzy  logic
scoring method, demonstrating that it remains stable and
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consistent  even  when  the  membership  function
parameters  are  altered.

These results indicate that fuzzy logic scoring provides
a reliable and consistent alternative to traditional scoring
methods, offering enhanced sensitivity and granularity in
assessing  life  satisfaction.  The  fuzzy  logic  method's
robustness and strong agreement with traditional scores
make it a valuable tool for psychological assessments.

4. DISCUSSION

4.1. Addressing Research Questions
The  primary  aim  of  this  study  was  to  evaluate  the

feasibility  and  benefits  of  applying  fuzzy  logic  as  an
alternative scoring method in psychological assessments,
specifically the Satisfaction With Life Scale (SWLS). The
research was guided by four primary questions, which we
address below.

4.1.1. How Does the Accuracy of Fuzzy Logic Scoring
Compare  to  Traditional  Scoring  Methods  in
Psychological  Assessments?

The accuracy of fuzzy logic scoring was evaluated by
comparing  it  with  the  traditional  scoring  method.  The
comparison  was  based  on  several  statistical  analyses,
including  Pearson  correlation,  paired  t-tests,  and
regression analysis. The results revealed a strong positive
correlation  between  traditional  and  fuzzy  logic  scores,
indicating  that  the  fuzzy  logic  method  accurately
replicates  the  outcomes  of  traditional  scoring  (Lucas  &
Peláez,  2019).  Additionally,  the  paired  t-test  showed  a
significant  difference  in  mean  scores  between  the  two
methods, with consistently higher fuzzy logic scores. This
suggests that while fuzzy logic scoring aligns closely with
traditional scoring, it also captures additional nuances in
the  data  that  traditional  methods  may  overlook.  The
regression  analysis  further  supported  this  finding,
demonstrating  a  strong  linear  relationship  between
traditional and fuzzy scores. The intercept and slope of the
regression  line  indicate  that  fuzzy  logic  scores  increase
proportionally  with  traditional  scores,  validating  the
accuracy  and  reliability  of  the  fuzzy  logic  method  [64].

4.1.2.  Does  Fuzzy  Logic  Scoring  Enhance  the
Sensitivity  of  Psychological  Assessments  to  Detect
Small  but  Significant  Changes  in  Individual
Responses?

The sensitivity of the fuzzy logic scoring method was
evaluated through detailed statistical analysis. The fuzzy
logic  method  demonstrated  higher  sensitivity  than
traditional scoring, as evidenced by the significant mean
differences  in  the  paired  t-test  results.  The  mean
difference between traditional and fuzzy scores suggests
that fuzzy logic scoring is more responsive to variations in
individual  responses  [65].  Moreover,  the  distribution  of
fuzzy logic scores,  as depicted in the histogram and box
plot, showed a more normal distribution with a narrower
range of variability among the middle 50% of responses.
This  indicates  that  fuzzy  logic  scoring  can  better

differentiate among participants with varying levels of life
satisfaction,  capturing  subtle  changes  that  traditional
scoring may miss. The enhanced granularity provided by
fuzzy logic scoring allows for a more detailed and accurate
assessment  of  psychological  constructs,  making  it
particularly  valuable  in  clinical  and  research  settings
where detecting small but meaningful changes is crucial
[66].

4.1.3.  How Do  Fuzzy  Logic  and  Traditional  Scoring
Methods  Differ  in  Their  Ability  to  Mitigate  Ceiling
and Floor Effects in Psychological Assessments?

Ceiling and floor  effects,  where scores cluster  at  the
high  or  low  ends  of  the  scale,  are  common  issues  in
traditional  scoring  methods.  These  effects  can  limit  the
ability to distinguish between individuals with very high or
deficient levels of the assessed trait. The analysis showed
that  fuzzy  logic  scoring  mitigates  these  effects  more
effectively  than  traditional  scoring.  The  descriptive
statistics  indicated  that  fuzzy  logic  scores  were  more
balanced and normally distributed than traditional scores,
exhibiting  slight  skewness.  The  narrower  interquartile
range  and  higher  median  scores  for  fuzzy  logic  suggest
that  this  method  provides  a  more  differentiated  scoring
system, especially at the extremes of the scale [67]. This
ability  to  better  capture  variations  at  both  high  and low
ends  enhances  the  discriminatory  power  of  the
assessment,  making  fuzzy  logic  scoring  a  robust
alternative  to  traditional  methods,  particularly  in  high-
stakes  assessments  [68].

4.1.4.  What  Are  the  Practical  Implications  of
Implementing Fuzzy Logic Scoring in Psychological
Assessments?

The practical implications of implementing fuzzy logic
scoring in psychological assessments are significant. The
enhanced sensitivity and granularity of fuzzy logic scoring
can lead to more accurate and detailed measurements of
psychological constructs. This can improve the validity and
reliability  of  assessments,  providing  richer  data  for
researchers and clinicians. In clinical practice, detecting
small but significant changes in a patient's condition can
inform more timely and tailored interventions, potentially
improving  treatment  outcomes  [69].  For  instance,  in
monitoring  depression,  fuzzy  logic  scoring  can  capture
incremental improvements that traditional methods might
miss,  allowing  for  better  tracking  of  progress  and
adjustment  of  treatment  plans.

In educational settings, fuzzy logic scoring can provide
a  more  accurate  assessment  of  students'  abilities  and
learning outcomes. This can help educators develop more
effective teaching strategies and support systems tailored
to individual students' needs. In occupational settings, the
detailed  insights  provided  by  fuzzy  logic  scoring  can
enhance  employee  selection,  training,  and  career
development  processes,  contributing  to  better  job
performance  and  satisfaction  [70].

The robust nature of fuzzy logic scoring also ensures
that assessments remain reliable and valid across diverse
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populations and contexts. This can help mitigate cultural
and contextual biases often present in traditional scoring
methods,  promoting  more  equitable  and  inclusive
assessments.  The  adaptability  of  fuzzy  logic  to  different
cultural and demographic contexts enhances its utility in
global  and  diverse  settings,  ensuring  fair  and  accurate
measurement for all individuals [71].

4.2. Interpretation of Key Findings

4.2.1. Enhanced Granularity and Sensitivity
The  application  of  fuzzy  logic  scoring  in  the  SWLS

revealed significantly enhanced granularity and sensitivity
compared  to  traditional  methods.  Traditional  scoring
aggregates responses into one score, potentially masking
subtle  variations in  life  satisfaction.  Fuzzy logic  scoring,
on the other hand, allows for a nuanced interpretation of
data  by  considering  partial  memberships  across
satisfaction levels. This improved sensitivity is valuable in
clinical  settings,  where  detecting  small  but  meaningful
changes  can  impact  treatment  decisions  and  outcomes.
Visual representations, such as histograms and box plots,
further  underscored  the  enhanced  granularity  of  fuzzy
logic  scoring  [72].

4.2.2. Robustness to Extreme Scores
Fuzzy  logic  scoring  demonstrated  robustness  to

extreme  scores,  addressing  a  common  limitation  of
traditional methods. Traditional scoring often suffers from
ceiling  and  floor  effects,  reducing  its  ability  to
differentiate  between individuals  at  the  extremes.  Fuzzy
logic scoring effectively mitigates these effects, offering a
more  balanced  assessment.  The  Bland-Altman  plot  [73]
and  sensitivity  analysis  [74]  further  confirmed  the
robustness  of  fuzzy  logic  scoring,  showing  minimal
differences  and  high  correlations  with  traditional  scores
even when membership function parameters were varied.

4.2.3. Consistency and Reliability
Fuzzy  logic  scoring  exhibited  high  consistency  and

reliability.  The  strong  positive  correlation  and  high  R2

value from the regression analysis indicate that fuzzy logic
scoring  aligns  closely  with  traditional  methods  while
providing  additional  depth  and  detail.  ANOVA  results
confirmed  the  method's  stability  and  consistency,  even
when  altered  membership  function  parameters,  rein-
forcing its reliability in diverse assessment contexts [24].

4.3. Implications for Psychological Assessment
The  findings  suggest  that  fuzzy  logic  scoring  could

significantly  enhance  psychological  assessments'
accuracy, sensitivity, and utility. Enhanced granularity and
sensitivity  allow  for  more  accurate  assessments  of  life
satisfaction, mental health, and personality traits, leading
to more tailored and effective treatment plans in clinical
practice.  In  educational  and occupational  settings,  fuzzy
logic  scoring  can  improve  the  precision  of  assessments
and  better  identify  high-achieving  individuals  and  those
needing support. The robustness of fuzzy logic scoring to
different  parameter  settings  ensures  reliable  and  valid

assessments  across  diverse  populations,  promoting
equitable  and  inclusive  assessments.  Integrating  fuzzy
logic  scoring  with  advanced  technologies  like  AI  can
further  enhance  the  precision  and  efficiency  of
psychological  evaluations  [75].

4.4. Limitations and Future Research Directions
While this study presents promising findings, several

limitations should be acknowledged. The sample consisted
primarily  of  Greek  adults,  which  may  limit  the  gener-
alizability of the findings. Future research should replicate
these results in diverse cultural and demographic groups.
Additionally,  the study focused on a single psychological
construct  (life  satisfaction)  and assessment tool  (SWLS).
Future  research  should  explore  fuzzy  logic  scoring's
application to various psychological constructs and tools.
The  cross-sectional  design  limits  causal  inferences;
longitudinal  studies  are  needed  to  assess  fuzzy  logic
scoring's effectiveness over time. Future research should
also develop user-friendly software and tools to facilitate
the practical adoption of fuzzy logic scoring.

CONCLUSION
This study highlights fuzzy logic scoring as a valuable

alternative to traditional scoring methods in psychological
assessments.  Fuzzy  logic  scoring  offers  enhanced  gran-
ularity and sensitivity, robustness to extreme scores, and
consistent  reliability,  leading  to  more  accurate  and
detailed measurements of psychological constructs. These
improvements  can  significantly  impact  clinical  practice,
educational  assessments,  and  research  methodologies.
While  further  research  is  needed  to  confirm  its
applicability across diverse populations and psychological
constructs,  integrating  fuzzy  logic  with  advanced
technologies  and  developing  user-friendly  tools  will  be
crucial  for  its  practical  implementation.  Fuzzy  logic
scoring  represents  a  significant  advancement  in  psy-
chological  assessment,  offering  a  nuanced  and  precise
approach to  measuring  complex  human experiences  and
enhancing  validity,  reliability,  and  inclusivity  in
psychological  assessments.
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