
 The Open Psychology Journal, 2010, 3, 163-173 163 

 
 1874-3501/10 2010 Bentham Open 

Open Access 

Causal and Predictive Learning Based on Normative Contextualization: 
The Relevance Relativization Model 

Manuel-Miguel Ramos-Álvarez1,* and Andrés Catena2 

1
Departamento de Psicología, Universidad de Jaén, Spain 

2
Departamento de Psicología Experimental, Universidad de Granada, Spain 

Abstract: We present a model aimed at accounting for learning of predictive and causal relationships involving stimulus 
compounds, by means of a mechanism based on a normative-methodological analysis of causality that goes beyond  
the traditional associative/rule-based controversy. According to the model, causal learning is attained by computing  
the validity of each stimulus in a given learning situation. The situation is determined by the assumptions, objectives,  
and aims held by the learner or demanded by the learning context. Hence, validity computation depends on task demands: 
causal, predictive, or diagnostic according to a general principle of normative contextualization that allows learners to 
adapt a between-cues competition principle in a flexible way. Validity is computed using the Relevance Relativization 
mechanism, a linear model, based on the balance between the probability of stimulus combinations and the probability  
of each cue. Thus, cue interactions occur mainly when the combination of stimuli shows predictive changes in relation  
to the same cues considered individually. This model makes novel predictions concerning variations of the competition 
principle as a function of the type of procedure, including blocking, simultaneous blocking, and relative validity. In  
addition, our model also integrates top-down and bottom-up processing levels, including individuals’ assumptions or  
previous beliefs.  
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INTRODUCTION 

 Learning relationships between events is the basis of 
many other abilities, such as predictive learning or causal 
inference in inductive reasoning [1-3]. It is important, for 
example, to detect danger signals and to find a cause for de-
pression. This depends on our ability to grasp the relation-
ships between the different events in the situation: cue (pre-
dictor, cause, or antecedent) and outcome (criterion, effect, 
or consequent). Hence, the main issue here is to be able to 
estimate the predictive or causal validity of the cue [1, 4-8]. 

 One common account of causal learning states that the 
validity of each cue is computed conditionally, and that the 
estimated validity of any particular cue depends on the valid-
ity of the other cues present in the situation. This process is 
competitive as the validity of each cue is computed control-
ling for other potential causal cues [9, 10]. The idea that 
good predictors or causes are weighted more strongly than 
poor ones is at the core of the relative validity principle,  
selective learning in associative theories, and discounting in 
inductive reasoning [8] [11, for a review].  

 Why should causal learning in complex situations always 
be solved through conditional computations? Validity can 
also be computed unconditionally, without discounting the 
influence of other alternative antecedent events.  
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 Spellman [12] compared conditional and unconditional 
strategies, and found more support for the conditional one, 
which reinforces an explanation based on the competition 
mechanism. Since then, conditional computation mecha-
nisms have been placed at the core of accounts of learning 
when two or more potential causal agents are present [13]. 
However, some recent data indicate that when complex po-
tential causal events are involved causal learning can be 
more flexible, which means that the conditional computa-
tional strategy is only one of the possible strategies people 
can use for solving a learning problem. In the next para-
graphs we will further develop this idea.  

 Firstly, it has been suggested that interaction between 
cues may emerge, not during learning but rather when a 
causal response is produced. In other words, conditional 
computation does not necessarily take place during the cod-
ing of relevant information, but when the accrued informa-
tion is translated into a response or causal judgment. So, 
theoretical accounts based on the interactive mechanism will 
explain some performance results, but not how learning pro-
ceeds.  

 The results normally observed in cue competition tasks 
can be well understood from this view: during the learning 
stages, people accumulate covariational information about 
each cue (A and B) separately, so that A and B are both good 
predictors of the outcome. However, when people are asked 
for a causal judgment they reason that one of them seems to 
be a better predictor and base their judgment on its relative 
validity. This conclusion is supported by recent research [14-
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16] and constitutes one of our main arguments in favour of 
this position. 

 Secondly, although there are practical and theoretical 
reasons to assume that, normatively speaking, a conditional 
computation is better for estimating the predictive validity in 
situations with more than one cue [5, 17, 18], it does not 
follow that such a computation is always correct (see discus-
sions about Simpson's Paradox in [19]). From a methodo-
logical point of view, some authors [20] have stated that 
relative (conditional) computations and independent (uncon-
ditional) ones relate to different questions about data. This 
implies that there is not one correct strategy.  

 In fact, the association between factors is not a character-
istic or attribute of them by themselves, because the associa-
tions depend on the contexts where they appear. Let us con-
sider the allergist task (e.g., [21]) in which the reasoner takes 
the role of an allergist who is asked to rate the strength of 
different foods as causes of an allergy. This task could be 
interpreted in the mental context of a single cause model, in 
which one particular food is supposed to be causing the al-
lergy, so that conditional computation is normative. How-
ever, if the task demands or previous beliefs lead the learner 
to observe (and rate) the relation or co-occurrence of the 
different foods with the allergy, the model under considera-
tion would likely be a multiple-cause one. When multiple 
cues can cause the same outcome, the best strategy is to 
compute the causal strength of each one separately, but bear-
ing in mind the potential cooperation between them at pro-
ducing the outcome. In this vein, Matute et al. [22] have 
shown that task demands can determine whether cue compe-
tition will be observed. Put simply, the two judgments obey 
different demands, and both are relevant. Instead of assum-
ing a single strategy, it is reasonable to expect participants to 
adopt either of the two perspectives, so that conditional or 
unconditional computations are used in a flexible way. 

 One good example of the flexible use of the conditional 
strategy comes from studies that manipulate causal direc-
tionality: in these, the temporal structure (or order of presen-
tation of stimuli) is opposite to the causal structure (or task-
imposed context) of cues and outcomes. In the predictive 
condition, the information concerning causally antecedent 
stimuli is presented first, and information about causally 
consequent events afterwards. However, when making a 
diagnosis, the order is the opposite: causally subsequent 
stimuli are considered first, and then causally antecedent 
ones. For example, in a medical context [23, 24] a set of ill-
nesses can be presented as potential causes of a given com-
mon symptom (predictive directionality, illness symptom), 
but also a set of symptoms can diagnose a given illness (di-
agnostic directionality, symptoms illness). Independently 
of the order in which illnesses and symptoms are presented, 
symptoms are effects, and illnesses causes. Competition be-
tween events is customarily observed when these events play 
the role of causes of a common effect (predictive context). 
However, it has been claimed that no competition occurs 
when events are seen as effects of a common cause (diagnos-
tic context). Thus, causal directionality appears to determine 
whether it is sensible to apply the competitive strategy [25]. 
Although this asymmetric effect is not undisputed [26], 
many authors accept that previous relevant causal knowledge 
can affect the processing of subsequent causal information.  

 We also assume that acquired knowledge guides predic-
tive and causal learning, that is to say, learning is not only 
data-driven (driven by evidence) but also theory-driven [27, 
28], so that the relativization mechanism is driven by task 
demands and also by people’s aims, beliefs and knowledge 
about the situation. This general principle has been some-
what supported in the causal learning literature [29], but, to 
the best of our knowledge, never in the predictive learning 
literature. The main aim of the model we develop here is to 
set forth the conditions under which relativization occurs and 
when it does not, including those related to the emergence of 
cue competition at the time of judgment. 

 Finally, the different procedures employed in competition 
research (blocking, overshadowing, conditioned inhibition, 
superconditioning and relative validity) might not be equiva-
lent. There are reasons to consider that different procedures 
could lead to the use of relative strategies in some cases, and 
independent ones in others. For instance, a relative validity 
procedure could activate a relative computation strategy, 
because the simultaneous comparison between diverse types 
of experience – compound and compounding stimulus – is 
made feasible, thus the apparent correspondence with condi-
tional computations. However, standard blocking favours an 
independent computation strategy for each predictor, as it 
fosters a segregation of the cues across the two phases of the 
procedure. Our model predicts differences in the use of rela-
tivization, depending on the features of the learning experi-
ence. 

 Our theoretical framework for the competition mecha-
nism should clearly delimit assumptions (or beliefs) and ob-
jectives relevant for predictions and causality judgments, 
making explicit the conditions that govern the application of 
relativization. We assume that computations will depend on 
several principles: 1) Individuals can use different types of 
computation, depending on their prior suppositions, the type 
of context, their aims, and their knowledge of the situation; 
2) different experimental procedures lead to different learn-
ing experiences that will also affect how and when relativiza-
tion is applied, and (3) the model should explain transfer 
between learning (or acquisition of information about rela-
tions between events) and how performance based on such 
learning occurs. How can the cognitive system display re-
sponses that reflect the competitive action mechanism and at 
the same time learn about cues in an isolated way? Answer-
ing this question is, in essence, our aim in proposing a rele-
vance relativization model. 

NORMATIVE ANALYSIS FOR THE COMPUTATION 

OF PREDICTIVE VALIDITY 

 In recent decades predictive-causal learning tasks have 
been designed with a normative framework in mind. In other 
words, contemporary research tends to use experimental de-
signs (and predictions) based on a high degree of formaliza-
tion. This agenda allows us to obtain magnitude estimations 
of the relationship between events with probability calculus. 
This approach comes from the Focal Set Contrast model 
developed by Cheng and Novick [5, 17, 30], where validity 
is derived from P, 
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 P is computed as the difference between two conditional 
probabilities: the probability of an outcome (Y) given the 
predictor i, PY, or predictive ability of the cue, minus the 
probability of the outcome given the absence of the predic-
tor, PN, or predictability of the consequence [31]. The estima-
tion of these probabilities is based on the frequencies in the 
contingency matrix: the number of cases where both predic-
tor and criterion appear (a), cases in which only the predictor 
is present (b), cases with only the result (c), and cases with-
out either the predictor or the consequence (d). Hereafter, we 
will refer to the canonical sequence order a, b, c, and d of the 
cells in the contingency table. 

 The higher the discrepancy between PY and PN, the 
stronger the relation between cue and outcome will be. For 
example, let us suppose that in a sample of 60 cases, 40 ate 
shrimps and 20 did not. Among those that consumed 
shrimps, 36 developed an allergy. Thus, PY is 36/40. Among 
those 20 that did not eat shrimps, only four developed an 
allergy, so that PN is 4/20. Formally, the relation obtained 
from P would be .70 ( P = 36/40–4/20 = .90–.20 = .70), 
namely, a positive high magnitude. 

 An adequate generalization to situations with more than 
one cue requires the use of P conditioned on the remaining 
factors. That is to say, the validity magnitude for each pre-
dictor has to be determined controlling that of other potential 
predictors. Thus, we should select circumscribed focal sets 
of evidence where that control can become effective. For 
instance, whenever the rule P is operative, it should be ap-
plied to each of the relevant cues, keeping constant the re-
maining ones at their two possible values, present or absent. 
Computations are similar to those of P on Equation 1 but 
selecting those sets of stimuli relevant to each conditionali-
zation test. 

 Within this framework, the problem arises when compar-
ing the information coming from the two focal sets, or the 
simple effects in experimental design theory [32]. For in-
stance, if we were interested in estimating the predictive va-
lidity for cue i in the presence of another set of cues, j, ac-
cording to the conditional perspective we would need to 
compute the simple effect of i when j is present, and also the 
effect of i when j is absent. According to the Probabilistic 
Contrast model of Cheng [17], these computations could 
lead to different results, which would in turn lead to situa-
tions with different causal interpretations, as for instance, the 
difference between causes and enabling conditions. How-
ever, what happens if any of the estimations/computations 
remains indeterminate? In such cases, psychological conse-
quences are unclear. 

 From our point of view it would be more practical to 
carry out computations by using the general linear regression 
model (for instance [33]). In this approach, the relative pre-
dictive validity of each cue is computed as the parameter of 
the regression equation, namely, the slope of the linear func-
tion between the target cue and the criterion, discarding the 
influence of other factors. This model is connected to the 
probabilistic learning tradition [34] and the lens model of 
Egon Brunswik [35]. For two cues the validity of the predic-
tor i, relative to other predictors, j, is computed as: 
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 Where the slope ( i) is the product of two factors: (1) the 
ratio between the outcome standard deviation (Sy) and the 
standard deviation of the target cue (Si); and (2) the relativi-
zation factor, where 

,i Y
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is the Pearson product-moment cor-

relation coefficient between predictor i and outcome, 
,j Y

r , is 

that between predictor j and outcome, and 
,i j

r  is the correla-

tion between the predictors. 

THE RELEVANCE RELATIVIZATION MODEL 

(BASED ON NORMATIVE CONTEXTUALIZATION) 

 Some researchers have suggested an information integra-
tion model which shares some features with the linear model 
[36, 37]. Our proposal extends this model to binary variables 
(for a review of the non-metric variant, see [38]) from the 
predictive point of view. Our model assumes that the estima-
tion of the validity of the target cue has three components: 
computation of the raw validities, determination of the rele-
vance of the relativization, and computation of the relative 
validities. The relativization is only applied to the cues in-
cluded in the set of relevant events ( ). Relativization is 
computed as in linear regression, by fine-tuning the slope. 
This coefficient rearranges the global validity of a cue ad-
justing it as a function of two computations: the global valid-
ity of the remaining alternative cues relevant for discounting 
(

j
r% ), and the inter-relation among cues (

ij
% ). The estimations 

of all the components from our model appear in Fig. (1) and 
an example of their applications is illustrated in Fig. (2). 

The Computation of the Raw Validities 

 While people are learning, globally computed validity 
values would be stored as raw estimations of the relation 
between these cues and the outcomes. According to Equation 
2, this could be obtained from the slope for each cue i, re-
moving all other cues. Specifically, the raw validity of cue i 
is the product of the (estimated) relative rates of event occur-
rence, (

Y i
S S% % ), and the global predictive value of the stimu-

lus being updated (
i
r% ). This computation is similar to the 

unconditional one, in the sense that it is made for each pre-
dictor in an independent way.  

 The estimation of global predictive values for binary 
variables can be made according to two types of rules, one of 
a normative kind (Alpha), and another one of a heuristic type 
(Beta) (see [39], for a discussion of the two strategies). The 
first is an algebraic combination of conditional probabilities, 
such as P or any other of a directional character; the second 
strategy is a linear one, based on frequency counts, and it 
would not be correct in the normative sense although it 
shows a high correlation with normative indices [40].  
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 Wa to Wd are weights reflecting the subjective impor-
tance the person attributes to each of the cells in the contin-
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gency matrix [41]. W0 represents an initial bias to be used in 
an anchoring-and-adjustment strategy [36, 42].  

 For illustration purposes (see Section 1, Figs. (1 & 2), 
taking into account that the target stimulus in Fig. (1) is 
Chicken –C– in Fig. 2), let us suppose that prediction of an 
allergy is made on the basis of two types of food: shrimps 
and chicken. Eating shrimps is a valid predictor of the al-
lergy, as its raw validity is high, .70. However, eating 
chicken is a poor predictor as its raw validity is 0.35. The 
computations for chicken are as follows. In our example, all 
the events have an equivalent rate of appearance, a standard 
deviation of .471. The product of the relative rate of the event 
(

iY
SS
~

/
~  = .47/.47 in the example) multiplied by the global 

predictive value of the stimulus being updated (
i
r~ = .35) 

yields the raw validity value we are looking for, (1)(.35) = 
.35. This is also the way in which computations for the other 
predictor (shrimp) would be carried out. 

                                                
1 The variability in binary variables is computed through the product of the probability 
of each of the two possible values, ( ) ( )P j P j . For instance, if cue j appeared in 80 

out of 120 trials, then the variance of j is: (80/120)(40/120) =.22. The square root of 
this product is the standard deviation of j (Sj). 

The Relevance of Relativization 

 As we mentioned in the introductory section, relativiza-
tion tends to occurs when a response is required, so that dur-
ing learning, globally computed validity values are stored as 
raw estimations of the relations between these cues and the 
consequence (

i
RawB%  in our model). When a causal judgment 

has to be produced, the relativization mechanism will be 
triggered, leading to the computation of the relative validity 
(

i
B% in our model).  

 Occasionally, the literature shows considerable process-
ing of stimuli that have no control over behaviour [43]. In 
fact, in animal conditioning research, studies about revitali-
zation of responses have shown that learning did take place 
about apparently shadowed or blocked stimuli [44, 45]. This 
has led some researchers to conclude that statistical depend-
encies among cues are learnt without interaction. However, 
interaction can occur when a judgment is to be made, so two 
separate mechanisms have been proposed: an associative one 
that would regulate the coding and an inductive one which 
would determine the final response [14]. Our model provides 
a normative framework for learning-performance transfer, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Relevance Relativization Model (based on normative contextualization). The figure follows the order of the explanation in the text: 
the general equation, the raw estimation of validity of the target cue i, the computations for relevance of relativization to form the set  
from the three Principles: Probabilistic Mechanism for Predictive Changes (PMPC), RR-by-Causality, & RR-by-Mental Model; the calcula-
tions of relative discounting of stimuli in such a set –predictive validity of each alternative cue and their relationship with the target. We have 
incorporated the effects of theory-driven processing on the model, indicating the place where assumptions or beliefs would have an effect 
(Bel1 to Bel6). 
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and, besides, goes one step further as it is able to formally 
explain such transfer. 

 On the other hand, having to produce a response does not 
imply that the relativization principle must be employed. As 
we pointed out before, there are arguments that support the 
idea that the cognitive system is flexible, so that the learner 
could apply the relativization principle or not, depending on 
the circumstances. As a matter of fact, subjects’ performance 
in learning tasks with stimulus compounds cannot be judged 
in absolute terms simply depending on whether they match 
conditioned computations or not. This leads us to a key prin-
ciple: the relativization mechanism has to be supported by an 
adequate normative contextualization. 

 First, our aim in a learning situation, in other words the 
processing demands imposed by having to produce a predic-
tive or a causal judgment, will determine how the mecha-
nism is employed. As Bindra et al. say: “What is of impor-
tance adaptively for an individual is the fact that in a stable 
environment, particular events or conditions usually have 
some predictive significance —they imply that some other 
particular events are likely to occur subsequently. Such a 
relation of unidirectional prediction may exist between two 
events without a logical, bidirectional relation or a causal, 
generative connection between them” [46, p. 423]. Learning 
that there are particular predictive relationships/connections 

does not necessarily imply that we learn that the first stimu-
lus is the cause and the second is the effect [13]. Simply put, 
we learn that both are related and that one of them precedes 
the other.  

 It is also true that predictive learning constitutes, together 
with other factors, part of the causal process. Establishing 
causality goes one step further, as, it additionally involves 
the specification of the mechanism responsible for the con-
nection/relationship [17]. Consequently, learning about pos-
sible connections, associations or relationships between 
events is an aspect which is more primary than establishing 
causality. If the situation is merely predictive, we would 
learn about each potential causal agent separately, establish-
ing its validity in an independent way (

i
RawB% ). Then we 

would include such estimations in relativization computa-
tions (

i
B% ) when searching for the most probable cause of the 

consequent event. That is to say, relativization would be 

relevant when establishing causality (hereafter, RR-by-

Causality). This could explain results such as those found by 
Matute and her colleagues [16, 47] showing that the type of 
question (contiguity, causality, predictive) and scenario (in-
structions and labels) have a modulating role on judgments 
in cue competition tasks. Pineño et al. [16] found competi-
tion between two causes when assessed with a causal test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Computations for the Relevance Relativization Model. The left part shows the frequencies in a probabilistic blocking design, so that 
the frequencies of the two phases are integrated in the table that appears below the evidence heading. The numbers within charts symbolize 
what would happen at the beginning of phase two (first quarter). The stimuli are: shrimp (S), chicken (C), and allergy (A). The details of the 
computation correspond to the equations of Fig. (1). C stands for cue i, and A for outcome Y. 
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question (i.e., Is the allergic reaction caused by eating 

chicken?) but not when assessed by a predictive test question 
(i.e., Is the allergic reaction predicted by eating chicken?). 
Moreover, competition was not found between predictors, 
when assessed by either predictive or causal test questions.  

 Secondly, different competition paradigms could lead to 
the use of relative strategies in some cases and independent 
ones in others. For instance, Wagner’s [48] relative validity 
procedure favours the simultaneous comparison between 
cues and the compound, and hence favours a conditional 
computation. However, standard Kamin blocking [49, 50] 
fosters a segregation of the experience with the compound 
and the elements through the two phases of the procedure; 
and hence it favours an unconditional computation. These 
two paradigms show the two extremes of a continuum, with 
relative validity at one extreme and blocking at the other, and 
leave other phenomena (i.e., overshadowing, simultaneous 
blocking, etc.) between these two extremes. Relativization is 
only feasible if the procedure includes at least two cues, and 
these cues are trained together. Otherwise, there would be no 
reason to learn that these cues have something in common. 
Consequently, relativization depends on the probability of 
the conjunction of the cues as compared to the probability of 
the stimulus. 

 Formally, in order to compute the validity associated to 
the target cue i, it would be relevant to relativize with regard 
to an alternative stimulus j when two conditions are met. 
First, cue j has to have a minimum probability of appearance 
in isolation, ( ) 0p j i > , and in combination with the target 

cue, ( ) 0p j i > . And second, when these probabilities are 

similar: 0|)()(| ijpijp . From now on, we will refer 

to these computations as the Probabilistic Mechanism for 
Predictive Changes (PMPC). Fig. (3) illustrates how it oper-
ates. If the probability of the union is similar to the probabil-
ity of the alternative cue in isolation, then the combination 
may introduce predictive changes (see Situation 1 on Fig. 3) 
and j could change what was learned about i. However, if the 
probability of the union is lower than the isolated probability 
(Fig. 3, Situation 2), then the conjunction cannot improve the 
prediction in a significant way, so that the alternative cue is 
not considered for discounting or relativization. This is be-
cause j seems to have nothing in common with i. Likewise, if 
the probability of the conjunction is higher than that of the 
isolated cues, the latter would not be considered for dis-
counting because the alternative cue is not significant regard-
ing prediction. In this case, there is no perception that they 
can modulate each other as they appear to be a single stimu-
lus (Situation 3 in Fig. 3). 

 PMPC would determine that relativization is pertinent 
below a threshold. The threshold will depend on the com-
plexity of the situation, particularly the number of cue com-
binations as compared to the number of isolated cues. In the 
remaining sections we will assume that .25 is an appropriate 
estimate for PMPC, |)()(| ijpijp , given that the 

simulations we have carried out with causal learning tasks 
yield values between .00 and .50 [51]. 

Returning to the allergist task, Fig. (2) shows that eating 
chicken has validity between .00 and .35, according to 

whether or not relativization is applied. If the task is of a 
standard blocking type, the PMPC would lead the system 
towards an unconditional (non relative) strategy, and select a 
moderate validity of .35. This is because the i cue does not 
fulfill the probabilistic conditions at the beginning of the 
blocking phase (i.e., first quarter). Despite the fact that nei-
ther probability is null (10/75 or .13 for ( )p j i  and 40/75 or 

.53 for ( )p j i ) the difference between them, .50, is higher 

than the threshold value, .25. Details are displayed in section 
2 of Fig. (2), bearing in mind that frequencies appear within 
parentheses in the Tables in the top part ( *). 

The Computation of Relative Validity 

 Considering raw validity as the starting point, the rea-
soner could then filter it taking into account the validity of 
other alternative potential predictors, following a relative 
perspective which, statistically speaking, closely converges 
with the computation of conditional contingency. This rela-
tivization consists of subtracting from the raw validity the 
global predictive value of the alternative cue (rj), weighted 
by the strength of the correlation between the two predictors. 
The estimation of the inter-relations among predictors could 
be obtained by any appropriate algorithm for the estimation 
of the statistical association, such as the  coefficient2 for 
binary variables [52]: 

ij

a c a b

a b c d a c b d
=

+ + + +
%

         (4) 

 Where a, b, c and d are now the frequencies of the com-
binations of the two cues i and j (see Fig. 2, section 3). It is 
easy to show that equation 4 is the geometric mean of the 
directional coefficients 

i j
r%  and

i j
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 The predictive validity of the target cue i can be esti-
mated according to:  
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 This is in essence a regression strategy. First, the global 

validity of the stimulus being updated (
i
r% ) is estimated, as 

well as the dispersion of the samples, that is, the rate of out-
come appearance (

Y
S% ) relative to rate of the target cue (

i
S% ). 

Then a circumscribed set of potentially competing cues is 
generated ( ) which must be also included in the relativiza-
tion mechanism ( j ). This set would be mainly, but not 

exclusively, limited by their pertinence or causal relevance 
[53] together with the background knowledge of the individual. 
A cue j goes over to this set of alternative stimuli ( ) when 
it introduces predictive changes. Causal scenarios tend to 
induce relativization, whereas non-causal ones (particularly 

                                                
2The Phi Coefficient is defined as the normalised difference of the two diagonals in the 
contingency table, 

( )( )( )( )
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. It can be easily shown that 

this expression is equivalent to the geometric mean of 
ji

r~ and 
ij
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of the predictive type) do not. Still, PMPC can alter this 
situation: for example, in causal scenarios there could be no 
relativization when the probability of a conjunction does not 
add changes with respect to the probability of the elements. 
In a predictive scenario, on the other hand, relativization will 
not take place during the coding of information, but it could 
intervene when translating what has been learned into 
performance. 

 Good alternative cues modulate the validity of the target 
cue when they appear simultaneously. In this way we would 
go from raw towards relative estimation following a simple 
mechanism with no further assumptions beyond those of any 
other model proposed in the predictive-causal learning litera-
ture, such as the Focal Set Contrast model (see Equation 1). 
If we focus on the food chicken (i in Fig. (1), “C” cue in Fig. 
2), we have all the necessary values except the inter-relation, 
which is estimated as the 2 coefficient [52] (see top part of 

section 3 on Figs. 1 & 2). Thus, following equation 5, we can 

compute the relativization factor as the ratio 
2~

1

~~~

ij

ijji rBRaw . 

In our example the relativization factor for chicken would be 
(35 – (.70)(.50))/ (1-.502) = 0, leading us to a relative validity 
of .00. In sum, raw validity, .35, and relative validity, .00, for 
the food chicken differ in this situation. 

THE ROLE OF KNOWLEDGE IN RELATIVIZATION 

 Our model assumes that previously acquired knowledge 
guides predictive and causal learning; thus, knowledge  
can determine when relativization is pertinent. To be precise, 
if the learner imposes a cause-to-effect model (i.e.,  
illnesses symptom) then relativization will be applicable. 
By contrast, in a diagnostic model of the type effects- 

to-cause (symptoms illness), relativization will not apply. 
This is because people understand that cues can compete if 
they play the role of causes of a common symptom (when 
they are antecedent events) but not when they play the role 
of multiple effects of the same cause (when they are conse-
quent events). The effect of the causal mental model comes 
before the effect of the directionality observed in the task 
[27], and we can assume that it also comes before the effect 
of other features of the causal scenario induced by labels or 
instructions [54]. Still, the effect of the causal model can be 
ruled by type of question. When the question matches the 
causal direction (probability of Effect/Cause: “Is eating 
chicken indicative that the allergic reaction is going to oc-
cur?”) competition would take place between stimuli de-
scribed as causes with a common effect, but not between 
effects of a common cause. The effect would be the opposite 
with predictive questions (probability of Cause/Effect: “Is 
the allergic reaction indicative that the patient has eaten 
Chicken?”). Finally, contiguity questions, with no predictive 
or causal value, such as “On the occasions in which the pa-
tient has eaten Chicken, did an allergic reaction occur?”, do 
not entail competition [22]. 

 Taking all this into account, it can be concluded that 
relevance relativization guided by a mental model (RR-by-
Mental-Model) or by task demands (RR-by-Causality) will 
jointly overrule the principle that depends on task data fea-
tures (PMPC). 

 Knowledge can be made concrete with different gener-
alizability levels [55]. It can be in the form of domain-
specific beliefs, but it can also be knowledge about structural 
properties, with a general character across different domains 
(i.e., meta-beliefs), including novel contexts. Among some 
of these properties we can find those of directionality,  

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Illustration of the formal mechanism that governs the relevance of relativization depending on the type of learning experience 
(PMPC). Cue A is indicated by i and cue B by j. In situation 1, relativization is pertinent because predictive information is increased when 
cue A is added. In situations 2 and 3 relativization is not pertinent because the compound is far less frequent than cue B (2) or because cues 
A and B appear to be too strongly associated (3). The threshold level has been set at 0.25. 
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variability, or even certain sample features such as its size 
[4]. 

 Therefore, if knowledge plays a role in the learning proc-
ess, expanding the task to stimulus compounds would entail 
thinking that conceptually-driven processes could also be 
adapted to the principle of predictive competition. Morris 
and Larrick [29] identified a series of factors which can 
modulate the effect of the competition principle within the 
domain of causal attributions in diagnostic normative situa-
tions (once an effect, i.e. a symptom, is observed, the task of 
the individual is to infer out which among several is the 
cause, i.e. illness, of the observed effect). The processing of 
diverse events can lead to either of the two results, competi-
tion or its absence, depending on a set of assumptions rele-
vant to stimulus compounds concerning a priori likelihoods, 
independence, sufficiency of integrating elements, and also 
concerning the number of alternative causes. Depending on 
these assumptions, sometimes competition can be obtained, 
but this is not always the case. In our model, prior knowl-
edge is relevant at several levels: 

• Regarding the interrelation factor, 
ij

~ , we assert the im-

portance of previous beliefs about the relationship among 
cues (intra-compound associations within the associative 
framework, dependence in inductive terms; Bel1 in Fig. 
1), but also about the previous validity (

j
r% ) of the re-

maining cues (a specific belief or the a-priori belief fixed 
beforehand, Bel2 in Fig. 1).  

• Assumptions regarding sufficiency and number of alter-
native cues, Bel3 and Bel4 (Fig. 1), would have an effect 
on the potential relativization set ( ), restricting it, so 
that these assumptions could be added to the RR-by-
Causal principle. 

• We also assert the relevance of some other factors, which 
have no direct connection with stimulus compounds, 
such as directionality, variability or sample size. For in-
stance, the directionality perceived by participants would 
lead them to apply a regression algorithm (Equation 2) in 
one direction or in the opposite direction, similarly to 
what happens in the General Linear Model [56]. Alterna-
tively, we could also estimate global validity (

i
r% ) by us-

ing the direction opposite to P; simply switching the 
role of information type b and c in the contingency ma-
trix (Bel5 in Fig. 1). Variability plays a direct role in the 
first ratio in Equations 2 and 5. This is the way in which 
our model is able to incorporate the density of events 
(Bel6 in Fig. 1). Furthermore, effects such as density of 
consequences [57] or assumptions about variability of 
samples are subsumed within the general principle ac-
cording to which differential weights are attached to dif-
ferent types of experience. If we connect studies which 
found a mismatch of the type ( )

a b c d
W W W W> >  with 

associative model proposals [58] which attach more  
importance to the consequence than to the antecedent 
event, then we arrive at the inequality 

a c b d
W W W W> > > . 

If we apply this inequality on the 
Y i

S S% %  ratio, it is clear 

that the numerator would prevail, rather than the denomi-

nator (Fig. 1), hence the effect of density of conse-
quences. 

• Finally, we assume conceptual influences in different 
levels of computation. For instance, the sample rate may 
cause absolute changes which have nothing to do with 
the relativization operations, that is to say, they simply 
produce a bias. However, people’s assumptions about 
stimulus compounds, such as a priori probability, inde-
pendence between cues, sufficiency of intervening ele-
ments and number of alternative events would operate 
within the computations of relativization. 

APPLICATION OF THE RELEVANCE RELATIVI-

ZATION MODEL 

 The competition principle has been extensively studied 
using different procedures, which can be classified into three 
categories. In the best known one, standard blocking, the 
degree of learning about X in AX+ pairings is attenuated  
by prior exposure to A+ pairings (A+, AX+); cue A blocks 
the learning about cue X [49, 50]. This effect has been  
frequently replicated in the context of predictive-causal 
learning [11]. The second procedure is similar to blocking 
but involves comparing responses to different cues simulta-
neously appearing in the task (e.g., Z vs X in an A+; B-; 
AX+; BY+; WZ+ design), rather than comparing conditions 
across different groups of participants [23, 59]. Competition 
in this second procedure has also been replicated (see [14], 
for a review, and [60]; for recent studies). The third proce-
dure, relative validity [61], can also be understood as block-
ing but in this case the different types of trials with single 
and compound stimuli (A+….AX+) are mixed together in  
a single undifferentiated stage. Relative validity has also 
been replicated [62, 63]. However, some variations of these 
procedures do not generate competition [64], or do so to a 
diminished degree [21].  

 From our point of view, validity will be relativized, and 
thus competition-like effects will occur, whenever there are 
alternative predictors that involve changes when combined 
but not when appearing in isolation (PMPC). This disquali-
fies the inclusion of cues which occur only on rare occasions 
as compared to a highly frequent target cue. We also discard 
events which form a configuration with the target. Conse-
quently, we assume that (1) an independent computation 
strategy will be used when the presence of trials with iso-
lated elements (A+) is higher than that of trials with the 
compound (AX+), whereas a relative strategy will be used 
when there is a predominance of compound trials (AX+). 
This explains how cues may acquire properties in isolation 
or only in combination. Thus, in a standard blocking proce-
dure (see panel A in Table 1), the strategy would be uncondi-
tional, as the density of trials A+ is higher than that of trials 
of the type AX+ from the beginning of the task, whereas 
within a relative validity procedure the strategy would be 
relative, as the density of trials A+ and AX+ is similar from 
the start.  

 Simultaneous or within-subjects blocking would be an 
intermediate case, more similar to validity than to standard 
blocking. Table 1 displays a direct comparison of these three 
types of procedure. Frequencies of each type of trial have 
been adjusted so that they can be directly compared. The 
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Table 1. Application of the Relevance Relativization Model to the Main Competition Tasks 

A. Designs of Three Common Competition Tasks 

Blocking Simultaneous Blocking  Relative Validity 

Phase I 

A+: 36 

Phase II 

AW+: 36 

Phase I 

A+:12 

B–:12 

–:12 

Phase II 

AW+:9 

BX+:9 

YZ+:9 

–:9 

A+:18 

AW+:18 

A+:18 

AW+:18 

B. Simulation of what would Happen in the First Third of the Session (12 Trials) after the First Occurrence of the Target Cue, W 

Blocking Simultaneous Blocking  Relative Validity 

Phase I 

A+: 36 

Phase II 

AW+: 12 

Phase I 

A+:12 

B–:12 

–:12 

Phase II 

AW+:3 

BX+:3 

YZ+:3 

–:3 

 

A+:6 

AW+:6 

Total: 48 Total: 48 Total: 12 

C. Estimation of the Relevance Relativization from PCPM for the Alternative Cue A, which would also be Included in the Computa-

tions for Stimulus W 

Blocking Simultaneous Blocking Relative Validity 

( ) 12 / 48 0.25

( ) 36 / 48 0.75

p A W

p A W

= =

= =

 
( ) 3 / 48 0.06

( ) 12 / 48 0.25

p A W

p A W

= =

= =

 
( ) 6 /12 0.50

( ) 6 /12 0.50

p A W

p A W

= =

= =

 

( ) ( ) 0.50p A W p A W =  ( ) ( ) 0.19p A W p A W =  ( ) ( ) 0.00p A W p A W =  

D. Predictions for the Target Cue, W 

Blocking Simultaneous Blocking Relative Validity 

Predictive Context: No 

PMPC: No 

>Pr/Ca Judg to W: Intermediate 

Causal Context: Yes 

PMPC: No 

>Pr Judg to W: Intermediate 

>Ca Judg to W: Null (only with tests apt to foster 

competition & Pr. Model) 

Predictive Context: No 

PMPC: Tends to Yes 

>Pr/Ca Judg to W: Intermediate 

Causal Context: Yes 

PMPC: Tends to Yes 

>Pr Judg to W: Intermediate 

>Ca Judg to W on Pr Model: Null (almost always) 

>Ca Judg to W on Dg Model: Intermediate 

Predictive Context: No 

PMPC: Yes 

>Pr/Ca Judg to W: Null (only with tests apt to 

foster competition & Pr. Model) 

Causal Context: Yes 

PMPC: Yes 

>Pr Judg to W: Intermediate 

>Ca Judg to W on Pr Model: Null 

>Ca Judg to W on Dg Model: Null (only with 

tests apt to foster competition between Effects) 

Note: Numbers within charts are the frequencies of each event. In section D, type of context (Predictive or Causal), result of PCPM, judgment type (Pr/Ca Judg, Predictive or Causal 
judgment), and causal model (Predictive, Pr, or Diagnostic, Dg). 
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first panel displays the designs of the three tasks. The second 
one shows the estimation of what would happen in the first 
third of the sessions after the appearance of the potentially 
overshadowed cue (W), that is, we simulate what would 
happen after 12 trials following the presence of this stimulus. 
Finally we detail the estimations of the two probabilities 
involved in the estimation of the PMPC together with the 
computation of PMPC. The last panel displays the predic-
tions for the target cue derived from our model. As can be 
seen in panel C, blocking and relative validity are two ex-
treme cases of PMPC (.50 and .00 respectively) and simulta-
neous blocking (.19) is an intermediate case, nearer to rela-
tive validity. We predict that the Causal/Predictive judgment 
about the target cue (W) will be of an intermediate magni-
tude in the Blocking design (remember that the raw validity 
of this stimulus is .50, as it only appeared in the middle of 
the trials sequence), and around 0 in Relative Validity (when 
validity will be 0, as in the example of Fig. 2).  

 However, the type of scenario (Predictive or Causal), the 
demands imposed by the different types of judgments (Pre-
dictive or Causal), together with the type of Causal Model 
(Predictive or Diagnostic) in causal situations can modulate 
these predictions, as can be derived from the two other prin-
ciples: RR-by-Causality and RR-by-Mental-Model (see Sec-
tion D in Table 1). The most representative case is a predic-
tive scenario in which relativization would not take place 
when coding the information but would intervene when 
translating what was learned into performance. This is where 
the PMPC would be used, so that the final response would in 
fact be affected by the competition principle, making the 
predictive judgment null although it was coded with an in-
termediate value. This happens when the test question fosters 
competition and the mental model is diagnostic.  
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