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Abstract: The close relation between time and causality is undisputed, but there is a paucity of research on how people 

use temporal information to inform their causal judgments. Experiment 1 examined the effect of delay variability on 

causal judgments, and whether participants were sensitive to the presence of a hastener cue that reduced the delay between 

cause and effect without changing the contingency. The results showed that higher causal ratings were given to cause-

effect pairs with less variable delays, but that conditions with an active hastener actually reduced participants’ ratings of 

the causal cues. The latter finding can also be explained in terms of people’s sensitivity to variability, because an unde-

tected hastener leads to greater variability in experienced delays. Experiment 2 followed up previous research showing 

that people give higher causal ratings to cause-effect pairs with shorter delays. We examined whether this finding might 

be due to the greater probability of intervening events rather than the length of delay per se. The results supported the 

former conjecture: participants’ causal ratings were influenced by the probability of intervening events in the cause-effect 

interval and not the mere length of delay. The findings from both experiments raise questions for current theories of 

causal learning.  
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INTRODUCTION 

 Causal knowledge is critical to the prediction, control and 
explanation of the world around us. There are numerous 
routes by which people acquire this knowledge, including 
covariation [1-4], interventions [5-7], temporal order [8-10], 
and prior knowledge [11, 12]. These different sources of 
information serve as noisy indicators of the underlying 
causal structure [13, 14]. No single source is an infallible 
guide, but in combination they can provide compelling evi-
dence in favour of an underlying causal model. When con-
fronted with a novel system, people seek to construct a gen-
erative causal model that allows them to mentally simulate 
and thus predict the system’s actual and potential behaviour 
[15, 16]. This is often a hard inference problem, because the 
data the learner receives about the system can be noisy, in-
complete and ambiguous. Hence the need to exploit multiple 
sources of evidence, under the assumption that regularities in 
the patterns of data generated by the system are determined 
by its causal structure.  

 In this paper we will focus on temporal information, and 
in particular how people use information about temporal 
delays between events to infer causal relations. Causal  
systems operate in real-time, and involve mechanisms and 
processes that unfold over time. Thus temporal information 
about the timing of events provides a natural source of 
knowledge about the underlying causal structure of a system. 
Temporal priority is a clear-cut example. Causes precede 
their effects, and therefore events that occur after a target  
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event cannot be causes of that event. People appear to be 
very sensitive to this constraint [9]. A more complex case is 
the temporal contiguity between events. The consensus view, 
ever since Hume [17], is that the more contiguous (closer in 
time) two events are, the more likely they are to be causally 
related. Previous research supports this view [18, 19] show-
ing that when everything else is held constant (e.g., there is 
the same contingency between cause and effect), participants 
gave higher causal ratings to cause-effect pairs with shorter 
delays (and after a certain threshold delay, they no longer 
judged the pair as causally related). An important caveat  
is that in certain contexts, and with certain types of causal 
relation, people can tolerate much longer delays. One clear 
demonstration of this is when people have prior knowledge 
about the causal mechanism that explains the delays  
[20, 21].

1
 For example, people expect a short delay between 

the click of a mouse and the appearance of an object on the 
computer screen, but tolerate a longer delay between the 
eating of seafood and a subsequent allergic reaction. This 
interplay between temporal cues and mechanism knowledge 
highlights the fact that the informational sources for causal 
relations are fallible, and that they can combine in a syner-
gistic fashion.  

Variability of Delay 

 One dimension of temporal information that remains 
relatively unexplored is people’s sensitivity to the distribu-
tion of time delays between putative cause and effect. This is 
an additional source of information about causality, because 
a near constant time delay between two event types is itself a 

                                                
1
There are also situations where people might tolerate long delays without having 

explicit knowledge about the underlying causal mechanism (cf. taste-aversion learning 

in rats [25]). 
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suggestive cue that the events are causally related. For ex-
ample, a precise and regular time interval between occur-
rences of X and Y seems unlikely under the hypothesis that 
the two events are entirely unrelated. A more plausible hy-
pothesis is that they are causally related. This provides a 
natural explanation for the constant temporal delay between 
them. Such an inference is less compelling when the delay 
between X and Y is more variable. This is because the vari-
ability in delays itself calls out for some explanation, and 
one possibility is that there are alternative causes of the ef-
fect Y. The postulation of alternative causes is unnecessary 
in the constant delay case.  

 The inference that high variability in delays between pu-
tative cause and effect signals the presence of alternative 
causes is by no means infallible. There are various other pos-
sible reasons for the delay variability that need not under-
mine the causal status of the X-Y pair. One possibility is the 
action of hasteners – events that change the timing of an 
effect without altering the probability of the effect (see be-
low for more details). The action of an unobserved hastener 
might account for the variability in delays between X and Y 
without detracting from the causal relation between them. 

 However, even if such possibilities are taken into ac-
count, the fact remains that a constant delay between cause 
and effect is better evidence (other things being equal) than a 
highly variable delay. This is because the latter case raises 
the possibility that alternative unknown causes are responsi-
ble, whereas the former requires no additional explanation.  

 It is important to note that information about delay vari-
ability is independent of: (i) the actual mean delay (since 
distributions can vary in both mean and variability, see Figs. 
2 & 3); and (ii) the actual covariation between events (since 
two events can have identical contingency, and yet differ in 
the temporal distributions of their delays). This is not to say 
that the perceived contingency between events is similarly 
independent. Indeed it is possible that computations of con-
tingency from a learner’s perspective are influenced by the 
nature of delays between events [22]. This possibility will be 
discussed further in the General Discussion.  

 There has been very little research on how the distribu-
tion of temporal delays affects people’s causal judgments, 
although there are suggestions in the literature that people 
are sensitive to the variability of delays. For example, Was-
serman, Chatlosh and Neunaber [23] found that participants 
gave slightly higher causal ratings in a constant delay condi-
tion than in a variable delay condition, even though the mean 
delay was equivalent in both conditions. Their study used a 
free-operant paradigm (participants evaluated the effect of a 
button press on the illumination of a light), so it is possible 
that this study underestimated the effect of delay variability 
because of the powerful cue already provided by the partici-
pants’ own interventions.  

Hasteners 

 Another unexplored issue is whether people are sensitive 
to factors that change the temporal distribution of delays 
without actually changing the probability of the effect. Such 
a factor is termed a hastener in the philosophy literature 
[24]. For example, buying ‘speedy-boarding’ on a cheap 
airline, allows you to board the plane quicker, but does not 

alter whether or not you board the plane. Indeed there seem 
to be many real-world situations where the presence of a 
specific factor speeds up the time at which an effect occurs, 
without changing whether or not the effect occurs. Are peo-
ple sensitive to this possibility? Would such features be 
categorized as causal, even though they only modulate the 
time at which the effect occurs, and do not change the con-
tingency between cause and effect? To our knowledge these 
are unexplored questions.  

 Experiment 1 is designed to look at people’s sensitivity 
to delay variability, and to the presence of hasteners. Neither 
question has received much attention in the psychological 
literature, and yet both might play a role in the use of tempo-
ral information to uncover causal structure. We predict that 
greater variability in the delays between cue-outcome pairs 
will lead to lower causal ratings. This is based on our hy-
pothesis that higher delay variability will encourage partici-
pants to postulate alternative causes of the effect. It also fol-
lows from a more general supposition that people are sensi-
tive to the uncertainty in sources of information, and attrib-
ute less weight to more unreliable (variable) sources. 

Delays and Intervening Events 

 The classic finding with respect to delays between puta-
tive causes and effects, as mentioned above, is that an in-
creased delay tends to lower people’s attributions of cause 
[18]. There are two main explanations for this finding, both 
of which have their roots in associative learning theory [25]. 
One account maintains that it is the duration of delay be-
tween events that directly affects the judged causal link be-
tween event pairs. This intrinsic delay process is readily ex-
plicated in associative terms [18]. According to associative 
theories, causal judgments are based on the formation of an 
associative link between mental representations of the cue 
and outcome, and the strength of this link dictates the 
strength of the explicit judgment. The greater the delay be-
tween presentations of cue and outcome, the weaker the as-
sociative link between their mental counterparts.  

 This is a simple and intuitive explanation, and can be 
given a rational justification under the assumption that closer 
events are more likely to be causally linked (other things 
being equal). An alternative explanation is that the longer the 
delays between putative cause and effect, the higher the 
probability that other causes might have occurred during that 
interval and produced the effect in question. This account 
can also be couched in associative terms. The intervening 
events will compete with the putative cause to predict the 
target effect, and thus reduce attributions to that cause alone 
[25]

2
. 

 This intervening events explanation is similar to our ear-
lier speculation about the effect of delay variability on causal 
judgments, whereby higher delay variability is expected to 
lower causal ratings because it increases the feasibility of 
alternative possible causes of the effect. The disruptive po-
tential of intervening events (even if they are unrelated to the 
actual effects) is magnified by the fact that they occur in 
between the actual cause and effect pairs. The qualitative 
temporal ordering (cause—intervening event—effect) pro-

                                                
2
We thank Jose Perales for useful suggestions on this section, including the terms 

‘intrinsic delay process’ and ‘intervening-events’ explanation. 
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vides weak evidence in favour of the intervening event as a 
cause of the effect [9]. The effect of delay on causal learning, 
and the viability of these two alternative explanations, will 
be investigated in Experiment 2.  

Overview of Experiment 1 

 Experiment 1 will explore the effect of delay variability 
on people’s causal judgments. It will also examine whether 
people’s judgments are sensitive to the presence of hasteners 
that reduce the delay between cause and effect without them-
selves changing the probability of the effect. To investigate 
these issues we use two novel causal learning tasks. In both 
tasks participants seek to identify the causes of a medical 
condition on the basis of real-time exposure to a virtual 
physiological system, with time varying presentations of 
putative causes (e.g., different types of bacteria) and effects 
(e.g., stomach cramps). In the learning phase participants 
watch a real-time animation of an endoscopic examination, 
and evaluate the causal efficacy of several types of bacte-
ria/viruses (characterized by distinctive features such as feel-
ers, tails and spots). To explore people’s sensitivity to delay 
variability we have both high and low variability conditions. 
To explore their sensitivity to hasteners we have conditions 
where the hastener is active or inactive. People’s causal 
judgments are assessed via explicit ratings of absolute causal 
strength, and through comparative ratings of causal contribu-
tion.  

EXPERIMENT 1 

Method 

Participants and Apparatus 

 46 UCL students were paid £3 to participate in the ex-
periment. Participants were run individually on computers 
using specially written software in C#.  

Design 

 A 2x2 mixed design was used, with Hastener (active, 
inactive) as a between-subject factor and Variability (low, 
high) as a within-subject factor.  

Materials 

 Participants were each presented with two causal learning 
tasks. These were formally identical, but differed in terms of 
the cover story and nature of the stimuli. Both tasks were 
couched in a medical setting, one involved detecting the ef-
fects of bacteria on stomach upsets, the other involved the 
effects of viruses on lung inflammation. In the bacteria task, 
participants had to infer the causal relation between different 
types of bacteria and a stomach cramp. The bacteria were 
depicted on the screen in a pictorial form. All bacteria had 
the same body and head shape, but differed in terms of the 
presence or absence of three features: tail, feelers, and spots 
on the back (see Fig. 1). Unknown to the participants, one of 
these features determined the probability of the effect 
(cause), another determined the time at which the effect  
occurred (hastener), and the third was inactive (lure). Which 
feature played which role was counterbalanced across  
participants.  

 There were eight different cue combinations (see Table 
1), and each pattern was presented 10 times through the 

course of the learning task, making a total of 80 presenta-
tions. The order of these was randomized for each partici-
pant.  

 

 

 

 

 

 

 

 

 

Fig. (1). Examples of bacteria used in movie: left bacterium has no 

features present, middle bacterium has all three features present, 

right bacterium has only feelers present.  

 In the learning phase of the task, participants watched a 
short movie that represented the real-time pictures from an 
endoscope placed inside the stomach of a patient. Bacteria 
were presented at random locations against a constant back-
ground depicting the inside of the stomach. The time interval 
between the start of the experiment and the presentation of 
the first bacterium, and between subsequent appearances of 
bacteria, were determined by random draws from an expo-
nential distribution with a mean of 6 seconds. An exponen-
tial distribution was used to ensure that the time intervals 
between bacteria were independent. Once a bacterium ap-
peared on the screen, it persisted for two seconds before dis-
appearing. The presence of the effect (a stomach cramp) was 
represented by a short red flash. The probability of the effect 
was determined by the presence or absence of the cause fea-
ture. When this feature was present, the probability of the 
effect was 0.8; when it was absent, the probability of the 
effect was 0.1. Thus, the presence of this feature greatly 
raised the probability of the effect, but there was still a small 
probability that the effect would occur in the absence of this 
feature (but only given the presence of a bacterium). The 
time delay between the appearance of the bacterium and the 
appearance of the effect was determined by whether the has-
tener was present (presence or absence of the hastener fea-
ture), and whether the hastener was active or inactive. This 
latter variable was a between-subject variable – half the par-
ticipants always saw active hasteners, half the participants 
always saw inactive hasteners (i.e. equivalent to a second 
lure). 

 In the hastener active condition, when the hastener fea-
ture was present the mean time delay between cause (bacte-
rium) and effect (stomach cramp) was 0.5 seconds; when it 
was absent, the mean time delay was 2 seconds. The active 
hastener reduced the time delay between bacteria and effect 
whether or not the cause feature was present. In the hastener 
inactive condition the mean delay between cause and effect 
was 2 seconds irrespective of the presence or absence of the 
hastener feature. For a summary of the probabilities and time 
delays see Table 1. 

 The variability of the delay between cause and effect was 

manipulated within-subjects, with two levels of variability: 
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high and low. Thus, each participant experienced one task 

with low variability delays, and the other with high variabil-

ity delays. In the low variability condition, the delays  

between cause and effect were randomly sampled from a 

lognormal distribution with a standard deviation of 0.1  

seconds. In the high variability condition, the delays were 

randomly sampled from a lognormal distribution with a  

standard deviation of 1 second. Lognormal distributions 

were used to avoid the possibility of negative delays.  

 Figs. (2 and 3) show the distributions of delays for low 

and high variability conditions respectively. Note that in the 

active hastener condition the mean delay is 0.5 seconds when 

the hastener feature is present, and 2 seconds when it is  

absent. In the inactive hastener condition the mean delay is 
always 2 seconds.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Distributions for delays between cause and effect in the 

low variability condition. Note that in the active hastener condition, 

mean delay is 0.5 secs when hastener is present, 2 secs when  

absent. In inactive hastener condition, mean delay is always 2 secs. 

 The virus task was formally equivalent to the bacteria 
task, but used a different cover story and visual stimuli. Par-
ticipants had to infer the causal relation between different 
types of virus and lung inflammation. All viruses had the 
same circular body shape with three arms, but differed in 

terms of the presence or absence of three features attached to 
these arms: a square, circle or triangle. The presence of lung 
inflammation was represented by a short green flash. In all 
other respects this task was identical to the bacteria task. The 
order of tasks was counterbalanced between participants.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Distributions for delays between cause and effect in the 

high variability condition. Note that in the active hastener condi-

tion, mean delay is 0.5 secs when hastener is present, 2 secs when 

absent. In inactive hastener condition, mean delay is always 2 secs. 

Procedure 

 Each participant completed two tasks. Before each task 
they were told that they were to take the role of a medical 
investigator assessing the effects of different bacteria (vi-
ruses) on the stomach (lungs). They were told that the bacte-
ria (viruses) could differ with respect to the presence or ab-
sence of three features. They also performed a brief recogni-
tion task to check that they could correctly identify these 
different features. Each task consisted in a learning phase 
and a judgment phase. In the learning phase participants 
watched a movie that lasted for approximately 8 minutes. In 
the movie they viewed the real-time presentation of bacteria 
(viruses) and stomach cramps (lung inflammation). The  
former were represented by the visual images shown in Fig. 
(1), the latter by flashes on the screen.  

Table 1.  Summary of Probabilities and Time Delays for the Eight Cue Combinations in the Learning Phase in Experiment 1 

Pattern Cause Hastener Lure P(Effect) Hastener Active 

Mean Time Delay (Seconds) 

Hastener Inactive 

Mean Time Delay (Seconds) 

A 1 1 1 0.8 0.5 2 

B 1 1 0 0.8 0.5 2 

C 1 0 1 0.8 2 2 

D 1 0 0 0.8 2 2 

E 0 1 1 0.1 0.5 2 

F 0 1 0 0.1 0.5 2 

G 0 0 1 0.1 2 2 

H 0 0 0 0.1 2 2 

Low variability

delay (seconds)

0 1 2 3 4 5

de
ns

ity

High variability

delay (seconds)

0 1 2 3 4 5

de
ns

ity
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Judgment Phase 

 At the end of the movie participants gave both absolute 
and comparative causal ratings. For the absolute ratings, par-
ticipants were shown each of the three features separately, 
and rated the extent to which each feature caused the effect 
(stomach cramps or lung inflammation). Participants regis-
tered their ratings by moving a slider on a scale from +10 
(‘completely causes’) to -10 (‘completely prevents’), with 0 
standing for ‘neither prevents nor causes’. For the compara-
tive ratings, all three features were presented together  
and participants were asked to divide up 100 points between 
each feature, according to its relative causal contribution  
to the effect (with higher numbers denoting greater causal 
impact).  

RESULTS  

 Overall there were no differences between the two tasks, 
so subsequent analyses ignore this factor.  

Absolute Causal Ratings 

 Fig. (4) presents the mean ratings for each cue type 
(cause, hastener, lure) according to delay variability (low vs. 
high) and whether the hastener was active or inactive. In-
spection of Fig. (4) shows that participants rated the cause 
cue much higher than the other two cues in all conditions, 
and also suggests that the cause cue is rated higher when the 
hastener is inactive rather than active. It is also notable that 
the lure was given negative ratings in all conditions, and that 
the hastener was given negative ratings in the low variability 
conditions.  

 To explore these observations, a 2x2x3 ANOVA was 
conducted with Cue Type and Variability (low, high) as 
within-subject factors, and Hastener (active, inactive) as a 

between-subject factor. There were main effects of Cue 
Type, F(2,88) = 52.65, p < .001, and Variability, F(1,44) = 
9.65, p < .005, and significant interactions between Cue 
Type and Variability, F(2,88) = 4.39, p < .05, and Cue Type 
and Hastener, F(2,88) = 3.10, p = .05. There was no main 
effect of Hastener, and no other interactions.  

 The Cue Type by Variability interaction was explained 
by the hastener cue, which was rated negatively in the low 

variability condition (-2.83) but not in the high variability 

condition (.28), t(45) = 3.67, p < .005. In contrast, the cause 
cue was rated more highly in the low variability condition 

(6.17) than in the high variability condition (5.43), although 

this difference was not significant, t(45) = 1.18, ns. The Cue 
Type by Hastener interaction was explained by the cause 

cue, which was rated higher when the hastener was inactive 

(6.85) than when it was active (4.79), t(44) = 2.16, p < .05.  

Comparative Causal Ratings 

 Fig. (5) presents the mean ratings for two cue types 

(cause, hastener) according to delay variability and whether 
the hastener was active or inactive. There was no need to 

include ratings for the lure cue in the analysis, because these 

were completely constrained by the values for the other two 
cues (i.e., lure = 100-cause-hastener). Inspection of Fig. (5) 

shows that participants rated the cause cue much higher than 

the hastener cue in all conditions. It also suggests that the 
cause cue is rated higher when the hastener is inactive rather 

than active, and when variability is low rather than high. 

 A 2x2x2 ANOVA was conducted with Cue Type (cause, 

hastener) and Variability (low, high) as within-subject fac-

tors, and Hastener (active, inactive) as a between-subject 
factor. There was a main effect of Cue Type, F(1,44) = 

90.10, p < .001, a marginal effect of Hastener, F(1,44)= 3.24, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Mean absolute cause ratings (±SEM) for each cue type by delay variability (low, high) and hastener (active, inactive). 
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p = .079, but no effect of Variability, F(1,44) = .452, ns. 

There were significant interactions between Cue Type and 
Variability, F(1,44) = 18.53, p < .001, and Cue Type and 

Hastener, F(1,44) = 5.17, p < .05. There were no other inter-

actions.  

 The Cue Type by Variability interaction was due to the 
fact that the cause cue was rated higher in the low variability 
condition (67.05) than the high variability condition (53.71), 
t(45) = 3.68, p < .005, whereas the hastener cue was rated 
higher in the high variability condition (25.08) than the  
low variability condition (14.38), t(45) = 3.78, p = .001. The 
Cue Type by Hastener interaction was explained by the 
cause cue, which was rated higher when the hastener  
was inactive (67.49) than when it was active (53.26),  
t(44) = 2.31, p < .05.  

DISCUSSION 

 The absolute and comparative causal ratings pointed to 
similar conclusions. First, participants in all conditions man-
aged to identify the unique feature that raised the probability 
of the effect, and they gave this feature higher causal ratings 
than the other two features. This fits with previous research 
showing that causal ratings are sensitive to the contingency 
between cause and effect [2, 4]. Second, the presence of an 
active hastener lowered the ratings given to the cause cue, 
both in conditions of high and low variability of delay. This 
is a notable finding, especially since the mean delay in the 
inactive hastener condition (2 secs) is longer than that in the 
active hastener condition (1.25secs). This seems to conflict 
with previous studies showing that people attribute greater 
causality with shorter delays between cause and effect [18]. 
However, as discussed below, this finding is potentially ex-
plained in terms of people’s sensitivity to the variability of 
the delay between cause and effect. Third, the variability of 
time delay had an effect on causal ratings for both the cause 
cue and the hastener. For the comparative ratings, there was 
an intriguing interaction between the effects of variability of 
delay and the presence of the hastener. The cause cue was 

rated as more causal when variability was low rather than 
high, but in contrast the hastener cue was rated as less causal 
when variability was low rather than high. 

3
This pattern was 

also found for the absolute ratings, although only the has-
tener cue showed a significant effect of delay variability.  

Effect of Hastener  

 The difference in causal ratings for the cause, whereby 
ratings were lower when the hastener was active rather than 
inactive, is initially puzzling since the contingency in both 
conditions is the same, and the mean delay between cause 
and effect is actually lower in the active hastener condition. 
One plausible explanation for this effect is that in the active 
condition the cause-effect delays are more variable because 
they are effectively being sampled from two separate distri-
butions (either mean = 0.5s when hastener is present or mean 
= 2s when hastener is absent). If participants are unaware 
that the hastener actually signals this switch in distribution, 
the active hastener condition will entail greater variability, 
and thus lower causal ratings for the cause. 

Effect of Variability 

 As predicted causal ratings for the cause were higher 
when the cause-effect delay was less variable. However, we 
also found that causal ratings for the hastener were lower 
when the cause-effect delay was less variable. This effect 
was not predicted, but might be because the low variability 
condition provided better conditions to uniquely identify the 
causal cue, and it was therefore easier to rule out the hastener 
feature as a cause.  

                                                
3
The reason for this discrepancy between absolute and comparative ratings is unclear. 

In a sense the comparative measures were the most appropriate in this context, because 

participants were choosing between alternative causal explanations. The absolute 

ratings were also potentially confusing because they allowed for negative ratings (i.e. a 
factor preventing an effect) whereas there was no mention of the possibility of preven-

tative causes in the cover story. Thus it is possible that participants used this part of the 
scale to emphasize the difference between judged causes and judged non-causes. The 

comparative ratings provided a more straightforward way of doing this. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Mean comparative cause ratings (±SEM) for each cue type by delay variability (low, high) and hastener (active, inactive). 
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EXPERIMENT 2 

 In the previous experiment, we showed that delay vari-

ability between cause and effect influenced people’s causal 
judgments about the cause-effect relation. As mentioned in 

the introduction, previous studies [18, 19] have shown that 

causal attribution was susceptible to the length of delay be-
tween a potential cause and effect. In Experiment 2 we focus 

on the locus of this effect. In particular, we investigate 

whether it is the length of delay itself, or whether it is the 
occurrence of intervening events during that delay which 

drives the delay effect. Experiment 2 was designed such that 

the average delay between cause and effect, and the prob-
ability of intervening events between cause and effect, were 

varied independently. 

METHOD 

Participants and Apparatus 

 Twenty participants participated in the experiment for 

course credit or 3 pounds. Participants were recruited from 
the University College London subject pool. The mean age 

was 20.45 years (SD=2.96). Participants were tested indi-

vidually in sound dampened rooms using custom software 
written in C#. 

Design 

 The experiment had a 2x2 within subjects design, with 
average Delay (short, long) between cause and effect and the 

Probability of Intervening Events (PoIE: low, high) between 
cause and effect as experimental factors. The order of the 
resulting 4 conditions was counterbalanced across partici-
pants.  

Materials 

 Participants were each presented with four causal learn-
ing tasks. Each task consisted of a learning phase and a 
causal judgement phase. Participants were asked to take the 
role of a geologist, investigating the effects of different types 
of seismic waves on the occurrence of earthquakes. In each 
task, a different triad of wave types was studied in a particu-
lar geographical region. Unbeknownst to the participants, 
only one of the three types of wave (the cause) raised the 
occurrence of earthquakes, while the other two types (lures) 
had no effect.  

 Each task consisted of a learning and causal judgement 
phase. In the learning phase, participants watched a short 
movie that represented real-time observations of a particular 
geographical region. Seismic waves were presented at  
random locations on a static satellite image of the region  
(see Fig. 6). The waves were represented by circular shapes 
that blinked in alarm-like manner for 1 second and  
each wave type had a distinct colour. Earthquakes were  
represented by a bright flash on screen. 

 The cause wave had a probability of p = 0.8 of resulting 
in an earthquake. If the wave was effective, the earthquake 
would occur after a random delay sampled from a lognormal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Example of primary task stimuli. The circular images symbolise waves (i.e., cues). The different colours distinguish between 3  

separate waves. 
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distribution. The mean of this distribution was 3 seconds in 
the short delay condition, and 6 seconds in the long delay 
condition. The standard deviation was 0.1 seconds in both 
conditions (the same value as the low variability conditions 
of Experiment 1). In addition to the earthquakes caused by 
the target cue (8 in total), there were also a total of 4 random 
occurrences of earthquakes, which served as a “background 
rate” of earthquakes.  

 Each wave type (Cause, Lure A, Lure B) was presented a 
total of 10 times during a task, with the order randomized for 
each participant. The time interval between waves was sam-
pled randomly from an exponential distribution. In the low 
PoIE conditions, the mean of this distribution was chosen 
such that the probability of a wave occurring between the 
cause and effect was p = 0.35. In the high PoIE condition, 
the mean was chosen such that this probability was p = 0.65. 

Procedure 

 Each participant completed four tasks. Before the first 
task, they were informed they were to take the role of a  
geologist investigating the causes of earthquakes. They were 
then shown the general appearance of the waves and earth-
quakes. Participants were informed that there would be 4 
animations, each lasting at most 10 minutes. 

 At the start of each task, participants were told the types 
of wave they would be investigating, as well as the region in 
which the investigation took place. They were informed that 
sometimes waves may cause earthquakes and sometimes 
they may not and that an earthquake may take time to de-
velop after the occurrence of a wave. In addition, they were 
reassured that some periods in which no waves would occur 
were normal. Participants were notified that there would be 
questions about the causal strength of each tremor at the end 
of each animation. 

 Each task consisted of a learning and causal judgment 
phase. In the learning phase, participants watched a movie 
that lasted between 1.28 and 9.25 minutes. The average 
length of each movie varied between conditions and was 
1.43 in the short delay/high PoIE condition, 4.21 in the short 

delay/low PoIE condition, 2.86 in the long delay/high PoIE 
condition and 8.41 minutes in the long delay/low PoIE con-
dition. In each movie, they observed different types of seis-
mic waves and earthquakes. The former were represented by 
the alarm-like circular shapes, and the latter by bright 
flashes. In each task, a different background image was used, 
to represent a different geographical region. Also, the seis-
mic waves had different colours in each task. The order of 
regions, and the colour of the cause and lure waves, was ran-
domized for each participant.  

 The judgment phase was similar to that of Experiment 1: 
for each type of wave, they were first asked to rate the extent 
to which it causes earthquakes, on a scale of 0 (does not 
cause the effect) to 10 (completely causes the effect). They 
were then asked for comparative ratings, in which they di-
vided 100 points amongst the three types of cues.  

RESULTS 

Absolute Ratings 

Fig. (7) depicts the mean ratings for each cue type.  

 The absolute ratings were analysed with a 2 (Delay) x 2 
(PoIE) x 3 (Cue Type: cause, lure A, lure B) repeated meas-
ures ANOVA. This showed a main effect for Cue Type, 
F(2,38) = 40.21, MSE = 8.57, p < .001, which is due to the 
cause receiving a higher rating than either lure A, t(159) = 
12.85, p < .001, and lure B, t(159)= 11.78, p<.001, while 
there was no difference between the lures, t(159) = 1.48, p = 
.14. In addition, there was a main effect of PoIE, F(1,19)= 
8.40, MSE = 3.175, p < .01, indicating overall higher ratings 
when the PoIE was high (M = 5.65, SD = 3.17) as compared 
to low (M = 5.16 , SD = 3.45). The main effect of Delay was 
not significant, F(1,19) = .45, MSE = 2.365, p = .51. There 
were no significant interactions, although there was a trend 
towards a significant interaction between Delay and PoIE, 
F(2,38) = 3.47, MSE = 5.55, p = .078, possibly indicating 
that the effect of PoIE is larger for shorter delays (low PoIE: 
M=5.72, SD=3.15; high PoIE: M=5.13, SD=3.52) than for 
longer delays low PoIE: M=5.56, SD=3.19 ; high PoIE: 
M=5.19, SD=3.40). 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Mean absolute ratings (±SEM) by delay and probability of intervening events (PoIE). 
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Comparative Ratings 

 As in Experiment 1, we only analysed the ratings for the 
cause and one of the lures. The mean comparative ratings are 
shown in Fig. (8). 

 The comparative ratings were analysed with a 2 (Delay) 
x 2 (PoIE) x 2 (Cue Type: predictor, lure A) repeated meas-
ures ANOVA. The results of this analysis agreed largely 
with those for the absolute ratings. There was a significant 
main effect of Cue Type, F(1,19) = 101.34, MSE=459.55, p 
< .001, indicating a higher rating for the cause (M=61.33, 
SD=24.87) than the lure (M=17.89, SD=16.46). In addition, 
there was a significant interaction between Cue Type and 
PoIE, F(1,19) = 7.42, MSE=474.18, p = .013, which was due 
to the cause receiving a higher rating under a low PoIE 
(M=65.49, SD=24.42) compared to a high PoIE (M=57.18, 
SD=24.77), t(79) = 2.09, p < .05, and the lure receiving a 
lower rating under a low PoIE (M=15.20, SD=16.59) com-
pared to a high PoIE (M=20.58, SD=15.98), although this 
difference just failed significance, t(79) = 1.98, p=.051. 
Other effects were not significant. In particular, there was no 
interaction between Delay and Cue Type, F(1,19) = .67, 
MSE = 583.87, p = .43. 

DISCUSSION 

 As in Experiment 1, the results of the absolute and com-
parative causal ratings were similar. As before, participants 
in all conditions managed to distinguish between a cause 
raising the probability of the effect and lures that had no ef-
fect. While participants were generally good at detecting the 
cause, their performance was clearly affected by the Prob-
ability of Intervening Events. When there was a high likeli-
hood of another cue occurring between cause and effect, the 
cause was judged as less causally effective, while the lures 
were rated as more causally effective. In contrast, we found 
no effects of average delay. Hence, it is the intervening 
events that affect causal attribution, not the length of the 
delay between cause and effect. By definition, intervening 
events occur in between the actual cause and its effect, and 
because of this qualitative causal ordering they can be more 
easily confused for having a causal effect.  

 Experiment 2 used a different cover story (geological 

events) to Experiment 1 (physiological events) and it could be 

argued that the former would be more tolerant to temporal 
delays of the order of seconds. This suggests that it would be 

worthwhile replicating Experiment 2 using the medical cover 

story from Experiment 1. However, the results of such a repli-
cation would not affect the conclusions we aim to draw from 

the current studies. If the main finding was not replicated, i.e. 

there was a main effect of temporal delay not explained by 
intervening events, then this would point to the role of prior 

knowledge about mechanisms (e.g., geological vs. physiologi-

cal) and their differing time frames of action. Our position is 
consistent with this conclusion. We maintain that people use 

multiple sources of information to infer causality, including 

prior knowledge, temporal information, and covariation [14], 
and that these can combine in synergistic ways.  

GENERAL DISCUSSION 

 The results from Experiment 1 show that people are sen-
sitive to the variability in delay between cause and effect, 
assigning greater causal efficacy to less variable cause-effect 
pairs. This was illustrated in two ways. First, participants 
gave higher causal ratings to the cause in the low rather than 
the high variability condition. Second, participants gave 
lower causal ratings to the cause when the hastener was inac-
tive rather than active. A straightforward interpretation of 
this finding is that participants experienced greater variabil-
ity of cause-effect delays in the active condition (delays were 
sampled from two distributions, mean = 2s and mean =0.5s) 
than in the inactive condition (delays were only sampled 
from one distribution, mean = 2s). This is particularly note-
worthy because the overall mean delay is lower (=1.25s) in 
the active condition, and previous research suggests that 
shorter delays lead to higher causal ratings [18]. Overall, the 
pattern of results for both hastener and delay variability can 
be explained by people’s sensitivity to the temporal distribu-
tion of delays, and in particular the variability in these distri-
butions. 

 Experiment 2 followed up on the claim that people give 

higher causal ratings to cause-effect pairs with shorter delays 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Mean comparative ratings (±SEM) by delay and probability of intervening events (PoIE). 



The Influence of Delays in Real-Time Causal Learning The Open Psychology Journal, 2010, Volume 3    193 

[18]. In particular, we explored whether this finding might 

be due to the probability of intervening events rather than the 

length of delay per se. The results supported the former con-
jecture. People’s causal ratings were influenced by the prob-

ability of intervening events (in the cause-effect interval) and 

not the mere length of the delay. The greater the probability 
of intervening events, the more likely participants were to 

assign causality to these events rather than the actual cause. 

This effect is compounded by the fact that the qualitative 
ordering of events (cause—intervening event – effect) also 

supports this spurious inference. This fits with previous re-

search by Lagnado and Sloman [9] showing that people 
readily use temporal ordering as a cue to causality, even 

when it conflicts with contingency information.  

 Taken together, these findings illustrate people’s sensitiv-

ity to temporal distributions of cause-effect delays, but also 

suggest that this might be due to more general level infer-
ences about the possibility of alternative causes of the target 

effect. In the case of the contrast between high and low delay 

variability, greater variability in delays might reduce confi-
dence in the target cause-effect pair because of the possibil-

ity of alternative (unknown) causes that would explain this 

variability. In the case of the contrast between short and long 
delays, longer delays may typically lead to lower causal rat-

ings because a greater number of intervening events are 

likely to be experienced. These intervening events by defini-
tion occur in between the actual cause and effect pairs, and 

in virtue of this qualitative temporal ordering are more likely 

to be attributed some causal efficacy. 

 It should be noted that delay variability could inform 

people’s causal judgments in two ways. First, increased vari-

ability can suggest the action of alternative unknown causes, 

thus lowering one’s confidence in the target causal relation. 

Second, increased variability might lower one’s belief about 

the strength of the putative causal relation. These two possi-

bilities can be conflated when a single causal judgment is 

taken [26], and our current studies cannot distinguish be-

tween them. However, we suspect that it is the former sense 

that is operating – that delay variability is affecting people’s 

beliefs in the existence of a causal link rather than the 

strength of this link. Future studies, using additional re-
sponse measures, could untangle these aspects. 

 Another issue that is underdetermined by the current data 

is whether participants in Experiment 1 were aware that the 

hastener (when active) modulated the time delay between 

cause and effect. This could be resolved in several ways. 

One approach, for example, would be to ask participants to 

make predictions about the likely time of an effect given the 

cause, and seeing whether their predictions were sensitive to 

the presence or absence of the hastener. Another approach 

would be to ask participants explicitly about the ‘hastening’ 
role of the hastener.  

 In addition, it would be informative to run an active has-
tener condition in which the hastener feature was not shown, 

but the participants still experienced the same distribution of 

time delays (i.e., sampled from two distributions, one with 
mean = 0.5s, the other mean = 2s). If participants persisted in 

attributing lower causal rating in this condition (as compared 

with the inactive hastener condition), then this would support 

the claim that people were unaware of the predictive effect 

of the hastener (with regard to mean time delay), and low-

ered their causal ratings due to the increased variability in 
the cause-effect delays.  

Associative Explanations 

 What do the results of the current experiments tell us 

about the processes underlying causal judgment? As noted in 

the Introduction, associative theories can explain the sensi-
tivity of people’s judgments to intervening events in terms of 

cue competition between these events and the putative cause 

[25]. The greater the number or probability of intervening 
events, the more competition there will be to predict and thus 

explain the target outcome. This means that the degree of 

association between putative cause and target effect is likely 
to be reduced when the temporal delay between this pair is 

longer, purely due to the increased probability of intervening 

events.  

 While this finding thus admits of an associative account, 

it is also open to a cognitive inferential explanation. Thus, 

from a rational perspective, the increase in the probability of 
intervening events, and hence in alternative potential causes 

of the target effect, is bound to increase the learner’s uncer-

tainty about which event is the true cause. Indeed one might 
construe the associative process as an implementation of this 

rational-level inference [27]. Alternatively, one might seek a 

different kind of psychological mechanism to underpin the 
rational-level inference [28]. The current experimental re-

sults cannot rule on these issues. 

 Providing an associative explanation for the effect of 

delay variability is less clearcut. One approach would be to 

argue that the effect is due to the fact that a learner’s compu-
tation of contingency is itself dependent on assumptions 

about temporal delays [22]. In particular, it could be argued 

that although Experiment 1 sought to keep the cause-effect 
contingency constant whilst independently manipulating 

delay variability, it is possible that participants computed 

different contingencies in the two delay variability condi-
tions

4
.
 
 

 To illustrate, consider the typical two-by-two contin-

gency table that is assumed to underlie people’s computa-
tions of contingency (see Table 2). The judged strength of a 

causal relation between cue and outcome is supposed to de-

pend on the contingency P = P(outcome|cue) - 
P(outcome|no cue) = A/(A+B) - C/(C+D). Thus, events 

counted in cells A and D increase the judged strength, and 

events in cells B and C decrease the judged strength. Typical 
causal learning experiments are trial-based, so it is relatively 

clear to the learner what constitutes an instance of each cell 

type. In real-time learning experiments, such as those con-
ducted in this paper, there are no pre-designated trials for 

learners to compute contingency, and therefore any such 

computations are dependent on the time frame imposed by 
the learner.  

 For example, if participants use a fixed temporal window 
(starting at the occurrence of a putative cause) to categorize 

event types, and thus compute contingency, there are condi-

                                                
4
We thank an anonymous reviewer for this point. 
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tions under which a low variability delay distribution will 

yield more event pairs that are categorised as instances of 

cell A, whereas a high variability distribution (with equiva-
lent mean) will yield more event pairs that are counted as 

instances of cell B or C. This would lead to reduced causal 

judgments in the high variability context. This effect de-
pends on the precise relation between the temporal window 

set by the learner and the mean (and shape) of the time delay 

distributions. Applied to Experiment 1, if participants set 
time windows that are greater than the mean delay, but not 

too much longer (i.e., <5sec in the 2 sec mean delay condi-

tion) then they would compute a lower contingency in the 
high variability condition.  

Table 2. Typical 2x2 Contingency Table in Causal Learning 

Analysis 

 Outcome Present Outcome Absent 

Cue present  A B 

Cue absent C D 

Note. Contingency P = P(outcome|cue) - P(outcome|no cue) = A/(A+B) - C/(C+D). 

 However, there are two reasons to suspect that this ap-
proach does not provide a satisfactory explanation for all the 

findings in Experiment 1. First, the temporal delays between 

events, even in the high variability condition, were still quite 
short (e.g., either mean = .5 or mean = 2 sec, SD = 1 sec) so 

it is less likely that learners imposed a threshold that was 

sufficiently short to lead to any substantial changes in con-
tingency computations. Second, this approach cannot explain 

the effect of variability due to the switching between two 

distinct distributions (mean = .5 or mean = 2 sec) in the ac-
tive hastener conditions. Whatever the threshold time, the 

probability that the effect occurs within the resulting time 

window will be at least as high in the active hastener condi-
tion as in the inactive hastener condition. Thus, if contingen-

cies were computed by counting occurrences of the effect 

within a set time window, the contingency would be at least 
as high in the active hastener condition as in the inactive 

hastener condition. So the finding that the cause was rated 

lower in the active hastener condition cannot be explained 
from a pure contingency account.  

CONCLUSIONS 

 We have presented two novel empirical findings with 

respect to people’s sensitivity to the variability in delay dis-

tributions, and the impact of intervening events in the inter-
val between causes and effects. It is not clear whether both 

these findings can be accommodated within current associa-

tive theories of causal learning, or whether they fit better 
with alternative accounts that incorporate temporal proper-

ties more directly (e.g., the temporal coding hypothesis [29]; 

rate-based theory [30]). Whatever the process-level account, 
however, we would argue that people’s sensitivity to tempo-

ral distributions of events and delays makes good sense from 

an inferential perspective. Given that the available evidence 
about causal systems is often noisy, incomplete and ambigu-

ous, it pays to exploit whatever information there is. In a 

dynamic world this will often consist in information about 

temporal distributions.  
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