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Abstract: Previous studies have demonstrated that physical therapy accompanied by Rhythmic Auditory Stimulation 

(RAS) can improve the motor skills of patients with Parkinson’s disease and, in particular, their gait disturbances. In the 

present work we describe the neurological bases and perceptual-motor deficits generally associated with Parkinson’s dis-

ease, with a specific focus on gait disturbances. Within this framework, we review the role of auditory cueing in the 

modulation of patients’ gait, addressing this issue from the cognitive, neurological and biomechanical perspectives. In 

particular, we focus on the new frontiers of both assessment and intervention. With regards to the assessment, we describe 

the advantages of the three-dimensional quantitative multifactorial gait analysis. As concerns the intervention, we illus-

trate the potential impact of the administration of ecological footstep sounds as rhythmic cues. 
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1. INTRODUCTION 

Parkinson’s disease (PD) is a chronic progressive neu-
rodegenerative disorder whose symptoms consist of the 
gradual loss of motor and non-motor functions [1]. The mo-
tor symptoms are the most relevant ones and consist of 
bradykinesia, rigidity, tremor, postural instability, and gait 
disturbance, usually associated with an increased probability 
of falls. Among the non-motor symptoms, previous studies 
report hyposmia (altered sense of smell), depression, cogni-
tive decline, psychiatric and sleep disorders [2]. It appears 
that some non-motor symptoms may occur early in the 
course of the disease, even at a premotor stage [3, 4], con-
trary to previous beliefs that PD was solely a disorder of 
movement [1]. However, from the patient’s point of view, 
the loss of motor functions probably remains the most chal-
lenging issue to deal with in daily activities, since it affects 
overall quality of life. 

From a pathophysiological perspective, a characteristic of 
PD is the progressive degeneration of dopaminergic neurons 
in basal ganglia and, in particular, in the substantia nigra pars 
compacta, although the pathological processes in PD do not 
regard only the dopaminergic system [5]. Indeed, empirical 
evidence suggests that PD is a more diffuse pathology in-
volving other non-dopaminergic systems, such as the sero-
tonergic, noradrenergic, glutamatergic, and cholinergic sys-
tems, within cortical, brainstem, and basal ganglia regions  
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[1, 6-9]. To cope with altered levels of neurotransmitters, 
pharmacological treatments such as levodopa, non-ergot 
dopamine agonists, and MAO-B inhibitors are commonly 
used. Moreover, other non-pharmacological approaches such 
as physical therapy, accompanied by regular exercise and an 
active lifestyle, are also effective in the treatment of motor 
symptoms [2, 10]. 

Among the aforementioned motor symptoms, gait distur-
bance probably represents the main impairment of PD pa-
tients. In fact, they are characterized by a typical short-
stepped, narrow based, shuffling gait, and experience diffi-
culties in adjusting gait parameters to meet changing task 
demands [11]. Despite the success of pharmacological treat-
ments in improving some features of PD, in some cases  
gait deficits can be resistant to medication and over time 
become one of the most debilitating symptoms [12, 13]. 
Therefore, the attention of many scientists has focused on 
investigating alternative therapies as well. Among the non-
pharmacological approaches, one of the methods most stud-
ied is Rhythmic Auditory Stimulation (RAS). This method 
consists of the administration of auditory cues that provide 
patients with a rhythmic cadence, thus facilitating their gait 
regulation. The effectiveness of RAS has often been assessed 
with quantitative movement analysis techniques, in some 
cases by exploiting state-of-the-art technologies of motion 
capture systems which in a single session integrate data as-
sociated with kinematics, kinetics and muscular activation 
during gait, and which are able to detect even subtle im-
provements in gait patterns. 

The present work reviews the mechanisms underpinning 
the RAS method and the main results obtained in previous 
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studies. Moreover, we illustrate the most recent and ad-
vanced approaches both for the quantitative assessment of 
gait in PD patients and for their gait modulation through the 
RAS method. 

2. EMPIRICAL EVIDENCE SUPPORTING RHYTH-
MIC AUDITORY STIMULATION IN PD 

2.1. Timing Mechanisms in PD 

Skill in walking is based on the precise coordination of 

muscle activation. In other words, it is founded on the cor-
rect functioning of timing mechanisms which – like an or-

chestra conductor – coordinate and direct every movement of 

our body. The regulation of these timing mechanisms in hu-
mans is performed by different brain areas. Among these, 

much empirical evidence indicates that basal ganglia play a 

very important role [14]. The involvement of basal ganglia in 
timing processing has been demonstrated in healthy partici-

pants through functional imaging studies [15-19], and in 

clinical studies in PD patients [20-23], whose basal ganglia 
are particularly affected. 

From a cognitive perspective, when PD patients are in 
their “off” state, that is, not under the effect of medication, 
they experience deleterious effects on their temporal process-
ing capabilities compared to healthy subjects. In particular, 
they show dysfunction in repetitive motor timing [20], they 
have a slower “internal clock” [21], and their response pat-
tern violates the normal scalar property [24]. The dysfunc-
tion of temporal processing appears to be one origin of gait 
disturbance [13, 14, 25]. In other words, a deficient timing 
process may result in an irregular timing of walking pace 
and, as a consequence, impaired motor performance [13]. 

2.2. Effects of Rhythmic Auditory Stimulation on Motor 
Performance 

In the early 1990s, Thaut and colleagues successfully 
tested a new motor rehabilitation method based on auditory 
cueing in stroke patients with hemiparetic gait [26]. The suc-
cess of the auditory cueing method with stroke patients 
stimulated investigations regarding its extension to PD pa-
tients [27]. In the subsequent years, Thaut and collaborators 
used their cueing method – named Rhythmic Auditory 
Stimulation – to improve the gait deficits of PD, providing 
patients with rhythmic guidance to facilitate patients’ walk-
ing pace by influencing their internal timing mechanisms 
[28, 29].  

In one of their first studies on PD [29], Thaut and col-
leagues compared the data of PD patients who were ran-
domly assigned to one of the following three conditions: 1) 
RAS training; 2) internally self-paced training; 3) no train-
ing. The training programs lasted three weeks and consisted 
of 30 minutes of daily exercise: Walking on a flat surface, 
stair stepping and stop and go exercises. The participants 
assigned to the RAS condition performed the exercises with 
auditory stimulation at three different tempos (normal, quick 
and fast) every day. The tempos were progressively in-
creased by 5 to 10% in the second week, and by an addi-
tional 5 to 10% in the third week. Participants assigned to the 
internally self-paced training condition performed exactly 
the same exercises, without RAS (they were instructed to 

exercise at different speeds similar to those of the RAS train-
ing patients). The results showed that both RAS and self-
paced training patients improved their gait parameters. How-
ever, the improvements of the RAS training patients in gait 
velocity, stride length, and step cadence were significantly 
greater than both self-paced training and no-training patients. 
Moreover, the RAS training participants had a significant 
reduction in amplitude variability in the anterior tibialis and 
vastus lateralis muscles. A more in-depth analysis of elec-
tromyography patterns confirmed these results, evidencing 
significant decreases in tibialis anterior shape variability and 
asymmetry, and gastrocnemius shape variability after three-
weeks of RAS training [28]. 

The studies described above aroused much enthusiasm 

among researchers and stimulated further investigations on 
the RAS method in PD, with the aim of extending results and 

better exploring the mechanisms underpinning the method. 

Some of these studies investigated the immediate effects of 
RAS on motor performance by assessing motor parameters 

after a single session of RAS [30-48]. Other studies explored 

the mid-/long-term effects of RAS training, varying different 
parameters, such as number of training weeks, number of 

sessions per week, session duration, kind of stimuli, kind of 

exercise, administered tempos, severity of participants’ dis-
ease [42, 49-59]. 

The majority of these studies reported positive effects of 
RAS both immediately after a single RAS session and after a 

longer training program. Indeed, in both cases, it is quite 

well-established that RAS improves gait velocity, cadence, 
and stride length [43, 50-52, 57, 60]. Moreover, most of the 

studies reported improvements regarding the symmetry of 

muscle activation in legs and arms, as well as timing vari-
ability [28, 33, 35, 61] and, in general, stability while walk-

ing [13, 62]. 

From a clinical perspective, it has been reported that 
RAS training can facilitate performance improvements rela-

tive to the Dynamic Gait Index and Tinetti Test, and that 

these improvements persisted at least four weeks after prac-
tice termination [54]. Moreover, some studies reported a 

decreased worry about falling, assessed through the Falls 

Efficacy Scale [57], and improvements in the activities of 
daily life and motor subscales of the Unified Parkinson’s 

Disease Rating Scale [54, 56, 63], especially in the most 

severe patients [30]. 

Another important aspect regards the effects of RAS on 
“freezing”, a transient episode in which the motor activity 
being attempted by an individual is halted [64]. Some studies 
have reported positive effects of RAS on freezing by assess-
ing it through objective measures [31, 34, 57] and subjective 
measures, such as the Freezing of Gait Questionnaire [54]. 
However, other studies failed to find improvements on freez-
ing [49] or found that after RAS patients with freezing may 
even experience stride length decreases [13, 46]. In our opin-
ion, further research is needed to better understand the ef-
fects of RAS on freezing. 

2.3. Auditory Cues Versus Other Modalities 

The effects of rhythmic cues on motor production have 
been studied in the domain of neurosciences and cognitive 
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psychology. From a neurophysiological perspective, many 
studies have demonstrated that listening to auditory rhythms 
determines the activation of motor regions of the brain, such 
as the supplementary motor area, midpremotor cortex, cere-
bellum and basal ganglia [65-67]. Such evidence suggests 
the existence of a functional connection between motor and 
acoustic areas of the brain concerning the elaboration of 
rhythmic material. For this reason, from a cognitive perspec-
tive, the processing of rhythmic material is more accurate in 
the auditory modality compared to other sensorial modalities 
[68,69]. For instance, many studies by Repp and colleagues 
demonstrated that sensorimotor synchronization in tapping 
tasks is more accurate with auditory rhythms than with vis-
ual rhythms [70], and that auditory distractors attract partici-
pants’ taps more than visual distractors [71]. 

The superiority of auditory stimulation compared to other 

modalities, such as visual and tactile, has been supported by 

a systematic review on rhythmic stimuli in PD [63]. Lim and 

colleagues analyzed twenty-four studies and concluded that 

insufficient evidence was found for improving gait of PD 

patients with the help of visual cueing, tactile cueing or a 

combination of auditory and visual cueing. On the contrary, 

they claimed that the walk of PD patients can be positively 
influenced by auditory rhythmic cueing. 

2.4. How Does Rhythmic Auditory Stimulation Work? 

One of the main disturbances of PD patients is the diffi-

culty in performing automatized movements [13,59]. These 

movements are usually coordinated by the basal ganglia 

which, in normal conditions, guarantee the execution of sub-

movements within an automatized sequence [72]. In PD pa-

tients the functioning of the internal clock that coordinates 

the automatic execution of these sub-movements is somehow 

compromised. For this reason, automatic cycling move-

ments, such as walking, become over time more difficult 
with the progression of the disease. 

The function of RAS is to substitute or at least assist the 

deficient internal clock of PD patients. RAS provides exter-

nal timing that acts as an internal clock, thus facilitating the 

regulation of patients’ internal timing [23,73]. As a conse-

quence, the administration of auditory rhythms helps patients 

during the execution of automatized movements (pacing 

their walk, for instance) and determining better motor out-

comes. In cognitive terms, this process is described by Thaut 

and Abiru as an oscillator-entrainment system, where the 

rhythmic processes in neural motor networks become en-

trained to rhythmic timekeeper networks in the auditory sys-

tem [27]. In this model the timekeeper networks are thought 
to be driven peripherally from auditory rhythmic inputs.  

Neurophysiological studies suggests that within the basal 

ganglia the putamen is particularly affected in PD [8], while 

it is responsive to rhythmic stimuli [66]. Functional imaging 

studies have shown severe reductions in putamen and related 

cortical and cortico-striatal activity during self-initiated or 

self-paced movements, while this activity is less compro-

mised during externally paced ones [74-76]. Thus, the pu-

tamen may be one of the brain areas that are positively af-
fected by RAS. 

3. NEW APPROACHES FOR ASSESSMENT: THREE-

DIMENSIONAL QUANTITATIVE GAIT ANALYSIS 

The term “Gait Analysis” (GA) refers to the application 
of quantitative three-dimensional multifactorial analyses of 
human movement to the specific case of locomotion. In par-
ticular, GA encompasses kinematics (i.e. joint angular dis-
placements), kinetics (ground reaction forces, joint moments 
and powers) and muscular activation (by means of surface 
Electromyography, sEMG) aspects of the locomotor pattern, 
supplying at the same time information about its main tem-
poral (velocity, cadence, and gait cycle duration) and spatial 
(step length and width) parameters. The subdivision between 
stance, swing and double support phases is also available 
once the gait cycle has been identified using manual or 
automatic approaches.  

3.1. Gait Kinematics in Individuals with PD 

Although many studies have attempted to quantitatively 
characterize gait patterns in individuals affected by PD, it is 
to be noted that most of them focus on the study of spatio-
temporal parameters, while few consider and analyze kine-
matics, kinetics and muscular activation data.  

The early pioneering studies on gait kinematics in PD 
were performed in the 1970s using simple photographic 
techniques [77-79]. After placing a number or reflective tar-
gets in the shape of strips on specific anatomic landmarks, 
the patient was photographed (at time intervals in the range 
0.05-0.10s) and the photos processed to extract the angular 
displacement patterns in hip, knee and ankle joint, the pat-
terns of flexion-extension of the upper limbs, the transverse 
rotation of the pelvis and thorax and the vertical trajectories 
of the head, as well as the main spatio-temporal parameters 
of the gait. Although intrinsically limited by the bi-
dimensional nature of the acquired data, these studies were 
the first to recognize the importance of objective gait analy-
sis in characterizing the specific features of gait in PD. Such 
features, even though easily recognizable by an expert clini-
cian, might be subject to changes (either related to the pro-
gression of the disease or to specific pharmacologic and re-
habilitative treatments) that are difficult to assess without the 
support of quantitative parameters. 

Nevertheless, further significant advancements in GA 
studies in PD occurred only in the mid-1990s, when more 
sophisticated technologies providing three-dimensional in-
formation on human motion (e.g. optoelectronic stereopho-
togrammetry) became accessible at reasonable costs. In this 
technique, spherical passive reflective markers are placed on 
the lower extremities, pelvis, and trunk of the subject accord-
ing to standardized protocols [80] and, during walking, the 
three-dimensional trajectories of the markers are captured by 
a certain number of high-frequency cameras (typically six or 
more with frequencies ranging from 50 to 240 Hz) which 
also provide stroboscopic infrared illumination. Such data 
are then processed by a workstation to provide the kinematic 
parameters related to the body districts of interest, namely 
trunk, pelvis, thigh, shank, and foot. The final output of the 
GA is usually represented by a series of diagrams that show 
the variation of angular displacements (pelvic tilt, rotation 
and obliquity, hip flexion-extension, adduction-abduction 
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and rotation, knee flexion-extension, ankle dorsiflexion, and 
foot progression) within the gait cycle.  

To date, kinematic data coming from three-dimensional 
GA have proved to be very useful not only to basically char-
acterize the distinctive features of gait patterns in PD, but 
also to objectively and quantitatively assess the effects of 
neurosurgery, electrical stimulation, pharmacological and 
rehabilitative treatments [11, 81-91]. 

3.2. Summary of Measures of Gait Kinematics 

Generally speaking, the large amount of data originated 
by GA may result complex to interpret for the clinician, and 
therefore not fully suitable to allow an easy and rapid as-
sessment of the patient’s functional limitation. This fact may 
represent an obstacle when, in clinical practice, the most 
significant measures have to been identified in a reasonable 
time.  

Hence, researchers have attempted to summarize the 
overall quality of gait pattern with single concise measures 
which, with a single value, condense the whole set of kine-
matic data obtained by GA and thus make data interpretation 
easier. A detailed overview of the most widespread gait 
summary measures is reported in the paper by Cimolin and 
Galli [92].  

Among the several proposed indexes, the Gait Profile 
Score (GPS) proposed by Baker and colleagues [93] has 
quickly gained popularity, especially owing to its versatility 
which makes it employable in a wide range of neurologic 
and non-neurologic diseases. The GPS score, which is sepa-
rately defined for each side of the body, is based upon nine 
key relevant kinematic variables, namely pelvic tilt, rotation 
and obliquity, hip flexion–extension, ad–abduction and rota-
tion, knee flexion–extension, ankle dorsiflexion and foot 
progression. For each of them the root mean square (RMS) 
difference across the whole gait cycle is computed between 
the patient’s data and the mean value extracted from a refer-
ence dataset obtained from healthy subjects. This value, 
which is referred to as Gait Variable Score (GVS), is calcu-
lated for each of the nine kinematic variables considered. 

The GPS is thus expressed by the following relationship: 

in which higher values of GPS represent larger deviations 
from a normal gait pattern.  

In practice, while the GPS summarizes the overall devia-
tion of the patient’s gait pattern with respect to a healthy 
population, the GVS describes the specific alteration related 
to a certain movement of a joint. The GPS is usually graphi-
cally displayed in the form of a bar chart along with the nine 
GVSs: this representation is known as the Movement Analy-
sis Profile (MAP). On the MAP, the height of each bar indi-
cates the GVS score, and this provides quick visual informa-
tion useful in assessing which variables may be responsible 
for high GPS values.  

A limitation of this approach is represented by the fact 
that even though the values of GPS and GVS provide an 
effective idea of gait alterations, no information is available 

on the type of such alteration or the time of their occurrence 
in the gait cycle. For instance, an excess or a deficit in knee 
flexion may originate the same GVS value if the distance of 
the two curves from normality is the same. 

In addition, the GPS, owing to its intrinsic nature of 
kinematic parameters, does not take into account the spatio-
temporal variables of gait, which are equally important in 
defining the limitations associated with the pathology. For 
this reason, GPS and spatio-temporal values should be used 
in conjunction as complementary outcome measures for a 
global comprehension of the patient’s gait limitations.  

The use of GPS has been found to be effective in evaluat-
ing gait abnormalities in a wide spectrum of pathologies in-
cluding Cerebral Palsy [93], Ehlers-Danlos syndrome [94], 
Multiple Sclerosis [95] and in different neurological and 
orthopedic diseases [96]. Moreover, strong, significant, posi-
tive correlations (i.e. Spearman correlations ranging from 
0.84 to 0.97) were found between the GPS and GVS scores 
and clinicians’ ratings of kinematic gait deviation [97]. 

Recently, the feasibility of applying the GPS/GVS ap-
proach has been tested with encouraging results among pa-
tients with PD. In particular, Speciali and colleagues propose 
the use of GPS to assess the effects of pharmacologic 
(levodopa) and neurosurgical (subthalamic deep brain stimu-
lation, DBS) treatments of gait kinematics [98]. They de-
tected significantly lower values of GPS in the case of DBS, 
mainly due to larger improvements exhibited in terms of hip 
flexion-extension with respect to levodopa. The GPS varia-
tions were also found to be substantially in agreement with 
previous similar studies in which kinematic changes were 
detected by analyzing the joint range of motion and the spa-
tio-temporal parameters of gait (i.e. walking speed and 
stride/step length). 

In another study by the same researchers [99], the GPS 
was employed to assess changes in gait kinematics in pa-
tients with PD when a concurrent cognitive task was added. 
They found that the GPS value increased under dual task 
conditions, thus indicating a significant alteration of gait 
pattern. In particular, all the GVS values increased, with the 
exception of hip rotation and foot progression.  

Summarizing, these studies have shown that the 
GPS/GVS-based approach appears suitable not only in de-
scribing differences in gait patterns between individuals with 
PD and healthy subjects, but also in easily assessing the ef-
fectiveness of pharmacologic/rehabilitative treatments or the 
alterations in gait associated with the effect of specific cog-
nitive loads. 

3.3. Kinetics and Muscular Activation 

In a modern laboratory for human movement analysis, 
kinematic data are routinely integrated with synchronized 
kinetic data (i.e. joint moments and powers) calculated on 
the basis of the force exchanged between the body and the 
ground which are collected using a force platform embedded 
in the walkway. The typical alterations of kinetic patterns in 
individuals with PD are represented in the form of a general-
ized reduction of the peaks of generated and absorbed me-
chanical power for hip, knee and ankle joints [82, 84, 87]. 
Interestingly, it has been shown that while a number of 
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therapeutic treatments succeed in generally restoring knee 
power generation at values similar to non-affected subjects, 
reduced power levels persist at the ankle joint in the push-off 
phase and in the hip joint at pull off [87,88]. 

Finally, GA can be optionally made still more accurate 

and complete by including in it the study of muscular activa-

tion patterns during gait, a task that can be performed using 
sEMG with either wired or wireless devices. The analyzed 

muscles are usually vastus lateralis, tibialis anterior, soleus 

and gastrocnemius, and the sEMG signal is explored to as-
sess activation timing, symmetry between the two limbs and 

stride to stride variability [28, 84, 100]. It is to be noted that 

few existing studies analyzed sEMG data during gait. In par-
ticular, they focused on establishing differences between 

individuals with PD and healthy controls [28], on assessing 

effects of visual cues as tools to regulate stride length [84] 
and on investigating freezing episodes [100]. 

3.4. Gait Analysis as a Tool to Verify the Effectiveness of 
the RAS Approach 

Since early studies in the mid-1990s, researchers have at-
tempted to employ quantitative techniques to verify the ef-

fectiveness of the RAS approach in improving gait patterns 

of individuals with PD. Thaut et al. [29] analyzed sEMG and 
computerized foot-switch data to confirm the beneficent ef-

fect of RAS expressed through significant improvement in 

velocity, stride length and cadence, as well as in timing of 
tibialis anterior and vastus lateralis activation. To date, GA 

represents the gold standard for such evaluations and it has 

been used in most similar studies, even though mainly to 
assess spatio-temporal parameters and variability of gait [13, 

101]. However, whether RAS training is able to improve 

joint kinematics or not remains still partly unexplored. 

4. NEW APPROACHES FOR INTERVENTION: THE 
USE OF ECOLOGICAL STIMULATION 

The sounds typically used in the studies on the RAS 
method are metronome tones, music or their combination, 
whose beats per minute are manipulated by experimenters 
[13, 27]. Surprisingly, the effects of ecological auditory 
stimuli, such as the rhythmic sounds produced by human 
walking, are almost unexplored. In our opinion this is unfor-
tunate and we will illustrate the empirical findings that en-
courage the investigation of ecological sounds of human 
walking for the modulation of gait in PD patients. 

4.1. Neurophysiological Bases 

One of the reasons that should drive researchers to inves-
tigate the effects of ecological rhythmic sounds on gait is the 
discovery of the so-called “mirror neurons” [102]. Mirror 
neurons are “a particular class of visuomotor neurons, 
originally discovered in area F5 of the monkey premotor 
cortex, that discharge both when the monkey does a particu-
lar action and when it observes another individual (monkey 
or human) doing a similar action” [102, p.169]. Brain imag-
ing studies suggest the existence of a mirror neuron system 
also in humans, having its core in the inferior parietal lobule, 
in the precentral gyrus, and in the inferior frontal gyrus [103, 
104]. Indeed, those regions activate both in response to ac-

tion observation and during action planning and execution, 
and would represent the neurological basis for imitation 
learning. 

Initially, the studies on mirror neurons focused on brain 
activation due to visual observation of actions. Subsequent 
studies investigated the effects of sounds associated with the 
execution of movements, and found results similar to those 
obtained in the visual modality: the administration of action-
related sounds activates the mirror neuron system, both in 
monkeys [105] and humans [106-109]. Those studies dem-
onstrated that the mirror neuron system is not limited to the 
visual modality: Such neurons code actions independently of 
whether they are performed, seen, or heard. The discovery of 
mirror neurons sensitive to ecological sounds of action 
arouses new challenges for clinical research: 1) Is it possible 
to benefit from the properties of the mirror neuron system to 
improve motor rehabilitation? 2) If so, would an Ecological 
Rhythmic Auditory Stimulation (E-RAS) be helpful for PD 
patients?  

To date, we are far from responding to these questions, 
but we can advance two considerations. The first is that the 
use of E-RAS – that is, the administration of human footstep 
sounds, manipulating the beats per minute – would not differ 
from the “classic” RAS, in terms of gait temporal support. 
Indeed, E-RAS would provide external timing that facilitates 
the regulation of the patients’ internal timing, exactly like 
RAS, thus functionally supporting the deficient activity of 
the basal ganglia. However, the administration of ecological 
footstep sounds would activate the mirror neuron system to 
produce a greater activation of those areas that control the 
motor production. The second consideration is that one of 
the main motor symptoms in PD patients, the freezing of 
gait, is correlated with frontal executive deficits and with 
tissue loss in the left inferior frontal gyrus, left precentral 
gyrus and left inferior parietal gyrus [110]. It is important to 
note that all these areas also belong to the mirror neuron sys-
tem [103,106]. Therefore, if the functionality of these areas 
can be somehow triggered through E-RAS, then this kind of 
stimulation might determine positive effects on patients with 
freezing of gait. 

4.2. Theoretical Bases 

The discovery of the mirror neuron system has provided 

a solid neurophysiological basis to the Theory of Event Cod-
ing [111,112], which theoretically postulates a common rep-

resentational system for perception and action. According to 

this theory, the match between perceptual and motor experi-
ence is a core element for perceptual influences on motor 

processes (and vice versa). Indeed, the perception of action-

related stimuli should evoke a representation of the action to 
be performed, and this representation should be further rein-

forced by previous motor experience of the same action. The 

synergic activation of representational codes coming from 
both the sensorial system and previous motor experience 

would determine an increased probability that individuals 

would follow the action-related stimuli features for perform-
ing their movements. On the contrary, action-unrelated stim-

uli would lack matching with previous motor experience 

and, as a consequence, would have a slighter influence on 
motor performance. 
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According to the theory, in the case of ecological rhyth-

mic auditory stimulation, the administration of human foot-

step sounds would evoke the representation of feature codes 
(such as cadence, step length, gender and weight of the 

walker, etc.) associated with the experience of walking. Nev-

ertheless, the representation of walking – and the corre-
sponding feature codes – is somehow pre-activated by previ-

ous individual motor experience. Therefore, the more the 

auditory stimulation matches previous motor experience, the 
more the features of auditory stimuli should affect the motor 

system and, consequently, the motor outcomes. Vice versa, 

the feature codes of artificial rhythmic auditory stimulation 
(i.e. metronome tones or music) would be represented in the 

common representational system, but they would not be rein-

forced by previous motor experience. As a consequence, 
artificial stimuli should be less effective than ecological 

stimuli. Undoubtedly, also artificial stimuli affect motor pro-

duction, but it is reasonable to predict that their influences on 
motor processes should be slighter compared to those of 

more evocative ecological stimuli, such as footstep sounds. 

4.3. Empirical Evidence in Perceptual and Motor Studies 

The role of ecological sound of actions in brain activation 

and motor representation has been addressed by several stud-

ies on complex movements. For instance, Woods and col-
leagues found that listening to action-related sport sounds 

determines the activation of auditory and motor planning 

areas, depending on the experience in a specific sport [113]. 
In particular, they found that expert athletes showed greater 

activation than novices in the inferior frontal gyrus and the 

parietal operculum, when passively listening to familiar sport 
sounds. Other studies on motor imagery suggest that the in-

ferior frontal gyrus is involved also during mental represen-

tation of action [114,115]. Therefore, in the study by Woods 
and colleagues, the exposition to familiar action-related 

sounds probably evoked a major representation of action in 

expert athletes compared to novices, owing to their motor 
experience. 

The motor experience is also a crucial factor for the rep-

resentation and the recognition of one’s own movement 

through sound. Indeed, it has been demonstrated that people 

are able to discriminate between sounds associated with their 

own motor performances and sounds produced by other in-

dividuals in many different actions, such as clapping [116], 

sport performances [117,118], and musical performances 

[119]. Again, such evidence has been interpreted as the result 

of the matching between the representation evoked by the 

sound, in terms of temporal factors or as a gestalt, and the 
previous motor experience. 

Empirical evidence suggests that evocative action-related 
sounds can also affect motor outcomes. For instance, Cesari 

and colleagues found that natural-like skateboarding sounds 

cause muscle activation in expert skaters compared to inex-
pert individuals [120]. Moreover, other studies have shown 

that ecological sounds can guide complex sport actions and 

positively affect athletes’ performances [121-123]. Finally, 
very recent findings have highlighted that ecological sounds 

of breathing can induce a standardization of breath duration 

in healthy participants, and demonstrated that the impact of 

ecological sounds is greater compared to that induced by 

artificial sounds [124]. 

4.4. Empirical Evidence on Parkinson 

To the best of our knowledge, the empirical evidence re-
garding the effects of ecological sounds on the gait of PD 
patients is limited to the study by Young, Rodger, and Craig 
[125]. In three experiments, these authors compared the ef-
fects of ecological footstep sounds, metronome sounds and 
synthesized walking sounds on the gait of PD patients and 
healthy controls. The ecological sounds were obtained by 
recording the sounds produced by a healthy male walking 
with different step lengths and at different cadences on 
coarse gravel. Of the three experiments, the first is of par-
ticular interest for the aims of the present review since it 
addresses a comparison between ecological footstep sounds 
and RAS based on metronome sounds. In a real-time imita-
tion task, the authors examined the ability of participants to 
use auditory information for guiding walking actions. The 
results revealed no differences between the two sounds con-
cerning the percentage change in step length, compared to 
baseline trials without auditory cues. However, for PD pa-
tients, step length variability was significantly lower in the 
ecological sound condition compared to the metronome one; 
moreover, PD patients showed significantly reduced vari-
ability in step length within the ecological sound condition, 
compared to the control group. The latter results highlight 
the superiority of ecological sounds in promoting a reduction 
of variability in the step length of PD patients, which is a 
desirable outcome for interventions since it represents a 
regularization of PD patients’ gait. 

In the second and third experiments described by Young 

and colleagues [125], the ecological sound was compared 

with a synthesized sound derived from recordings of the ki-

netic interactions between the foot and the walking surface. 

In the second experiment, the procedure was the same as the 

first (the only difference was the use of synthesized sounds 

instead of the metronome) and results revealed that PD pa-

tients reduced their step length variability in both conditions, 

but they failed to adapt to the target step length within the 

synthesized sound condition, unless previously and explicitly 

instructed about the stimuli step length. Vice versa, in the 

ecological sound condition, participants adapted to the target 

step length even without any instruction. Finally, in the third 

experiment, the authors compared the effects of ecological 

and synthesized sounds in combination with imagery. The 

results confirmed that PD patients were not able to adapt 

their step length in the synthesized sound condition. Moreo-

ver, the results revealed that compared to the control group, 

in the synthesized sound condition the step length variability 

of PD patients was significantly reduced, but it increased in 

combination with imagery. Vice versa, the ecological sound 

promoted both the adaptation and the reduction of step 
length variability, also in combination with imagery. 

Altogether, the results of Young and colleagues [125] 

suggest the superiority of ecological sounds in improving the 

gait parameters of PD patients against non-ecological sounds 

and thus represent an encouraging starting point for future 
research. 
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CONCLUSION 

Motor symptoms and in particular gait disturbances 
probably represent the main impairment in PD patients’ daily 
lives and affect their overall quality of life. The pharmacol-
ogical treatment of motor symptoms represents only a partial 
solution, which needs to be integrated with other approaches. 
Among them, physical therapy accompanied by rhythmic 
auditory stimulation has been proven effective in improving 
gait patterns. In the present work we have reviewed this ap-
proach, examining it from the cognitive, neurological and 
biomechanical perspectives, and have suggested new direc-
tions for future research, both for the assessment of gait dis-
turbances and their treatment. 

Our review has highlighted two main points that future 
studies should further address. The first regards the use of 
three-dimensional quantitative multifactorial analyses to 
accurately assess gait impairments in PD patients and the 
effects of RAS interventions. Indeed, most previous studies 
focused on the assessment of spatio-temporal parameters of 
gait, while only a few of them in literature analyzed kinemat-
ics, kinetics and muscular activation data simultaneously. 
Although this approach may result of difficult application in 
daily clinical evaluations owing to the large and complex 
amount of data produced, it may provide very accurate in-
formation for research, showing exactly “where”, “when” 
and “how” interventions act on patients’ gait. The second 
point regards the use of ecological rhythmic auditory stimu-
lation to modulate the gait of PD patients. Indeed, the major-
ity of previous studies used artificial sounds (i.e. metronome 
and/or music) as a pacemaker to provide rhythmic cues that 
facilitated patients’ coordination during their walk. However, 
we have reviewed theoretical issues, neurophysiological 
bases and cognitive findings that highlight the impact of eco-
logical sounds on motor representation and production, sug-
gesting their potential superiority over artificial sounds. For 
the present, empirical evidence concerning the effects of 
ecological sound on PD patients’ gait are very limited but, at 
the same time, they are very promising, thus we encourage 
investigating in this direction. 
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